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1.1 Introduction

The topic “Analysis of Algorithms” is concerned primarily with determining the memory
(space) and time requirements (complexity) of an algorithm. Since the techniques used to
determine memory requirements are a subset of those used to determine time requirements,
in this chapter, we focus on the methods used to determine the time complexity of an
algorithm.

The time complexity (or simply, complexity) of an algorithm is measured as a function
of the problem size. Some examples are given below.

1. The complexity of an algorithm to sort n elements may be given as a function of
n.

2. The complexity of an algorithm to multiply an m×n matrix and an n×p matrix
may be given as a function of m, n, and p.

3. The complexity of an algorithm to determine whether x is a prime number may
be given as a function of the number, n, of bits in x. Note that n = �log2(x+1)�.

We partition our discussion of algorithm analysis into the following sections.

1. Operation counts.
2. Step counts.
3. Counting cache misses.
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4. Asymptotic complexity.
5. Recurrence equations.
6. Amortized complexity.
7. Practical complexities.

1.2 Operation Counts

One way to estimate the time complexity of a program or method is to select one or more
operations, such as add, multiply, and compare, and to determine how many of each is
done. The success of this method depends on our ability to identify the operations that
contribute most to the time complexity.

Example 1.1

[Max Element] Figure 1.1 gives an algorithm that returns the position of the largest element
in the array a[0:n-1]. When n > 0, the time complexity of this algorithm can be estimated
by determining the number of comparisons made between elements of the array a. When
n ≤ 1, the for loop is not entered. So no comparisons between elements of a are made.
When n > 1, each iteration of the for loop makes one comparison between two elements of
a, and the total number of element comparisons is n-1. Therefore, the number of element
comparisons is max{n-1, 0}. The method max performs other comparisons (for example,
each iteration of the for loop is preceded by a comparison between i and n) that are not
included in the estimate. Other operations such as initializing positionOfCurrentMax and
incrementing the for loop index i are also not included in the estimate.

int max(int [] a, int n)
{

if (n < 1) return -1; // no max
int positionOfCurrentMax = 0;
for (int i = 1; i < n; i++)

if (a[positionOfCurrentMax] < a[i]) positionOfCurrentMax = i;
return positionOfCurrentMax;

}

FIGURE 1.1: Finding the position of the largest element in a[0:n-1].

The algorithm of Figure 1.1 has the nice property that the operation count is precisely
determined by the problem size. For many other problems, however, this is not so.

element in a[0:n-1] relocates to position a[n-1]. The number of swaps performed by this
algorithm depends not only on the problem size n but also on the particular values of the
elements in the array a. The number of swaps varies from a low of 0 to a high of n − 1.
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ure 1.2 gives an algorithm that performs one pass of a bubble sort. In this pass, the largest
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void bubble(int [] a, int n)
{

for (int i = 0; i < n - 1; i++)
if (a[i] > a[i+1]) swap(a[i], a[i+1]);

}

FIGURE 1.2: A bubbling pass.

Since the operation count isn’t always uniquely determined by the problem size, we ask
for the best, worst, and average counts.

Example 1.2

[Sequential Search] Figure 1.3 gives an algorithm that searches a[0:n-1] for the first oc-
currence of x. The number of comparisons between x and the elements of a isn’t uniquely
determined by the problem size n. For example, if n = 100 and x = a[0], then only 1
comparison is made. However, if x isn’t equal to any of the a[i]s, then 100 comparisons
are made.

A search is successful when x is one of the a[i]s. All other searches are unsuccessful.
Whenever we have an unsuccessful search, the number of comparisons is n. For successful
searches the best comparison count is 1, and the worst is n. For the average count assume
that all array elements are distinct and that each is searched for with equal frequency. The
average count for a successful search is

1
n

n∑

i=1

i = (n + 1)/2

int sequentialSearch(int [] a, int n, int x)
{

// search a[0:n-1] for x
int i;
for (i = 0; i < n && x != a[i]; i++);
if (i == n) return -1; // not found
else return i;

}

FIGURE 1.3: Sequential search.

Example 1.3

sorted array a[0:n-1].
We wish to determine the number of comparisons made between x and the elements of a.

For the problem size, we use the number n of elements initially in a. Assume that n ≥ 1.
The best or minimum number of comparisons is 1, which happens when the new element x

© 2005 by Chapman & Hall/CRC

[Insertion into a Sorted Array] Figure 1.4 gives an algorithm to insert an element x into a



1-4 Handbook of Data Structures and Applications

void insert(int [] a, int n, int x)
{

// find proper place for x
int i;
for (i = n - 1; i >= 0 && x < a[i]; i--)

a[i+1] = a[i];

a[i+1] = x; // insert x
}

FIGURE 1.4: Inserting into a sorted array.

is to be inserted at the right end. The maximum number of comparisons is n, which happens
when x is to be inserted at the left end. For the average assume that x has an equal chance
of being inserted into any of the possible n+1 positions. If x is eventually inserted into
position i+1 of a, i ≥ 0, then the number of comparisons is n-i. If x is inserted into a[0],
the number of comparisons is n. So the average count is

1
n + 1

(
n−1∑

i=0

(n − i) + n) =
1

n + 1
(

n∑

j=1

j + n) =
1

n + 1
(
n(n + 1)

2
+ n) =

n

2
+

n

n + 1

This average count is almost 1 more than half the worst-case count.

1.3 Step Counts

The operation-count method of estimating time complexity omits accounting for the time
spent on all but the chosen operations. In the step-count method, we attempt to account
for the time spent in all parts of the algorithm. As was the case for operation counts, the
step count is a function of the problem size.

A step is any computation unit that is independent of the problem size. Thus 10 additions
can be one step; 100 multiplications can also be one step; but n additions, where n is the
problem size, cannot be one step. The amount of computing represented by one step may
be different from that represented by another. For example, the entire statement

return a+b+b*c+(a+b-c)/(a+b)+4;

can be regarded as a single step if its execution time is independent of the problem size.
We may also count a statement such as

x = y;

as a single step.
To determine the step count of an algorithm, we first determine the number of steps

per execution (s/e) of each statement and the total number of times (i.e., frequency) each
statement is executed. Combining these two quantities gives us the total contribution of
each statement to the total step count. We then add the contributions of all statements to
obtain the step count for the entire algorithm.

© 2005 by Chapman & Hall/CRC



Analysis of Algorithms 1-5

Statement s/e Frequency Total steps
int sequentialSearch(· · · ) 0 0 0
{ 0 0 0

int i; 1 1 1
for (i = 0; i < n && x != a[i]; i++); 1 1 1
if (i == n) return -1; 1 1 1
else return i; 1 1 1

} 0 0 0
Total 4

TABLE 1.1

Statement s/e Frequency Total steps
int sequentialSearch(· · · ) 0 0 0
{ 0 0 0

int i; 1 1 1
for (i = 0; i < n && x != a[i]; i++); 1 n + 1 n + 1
if (i == n) return -1; 1 1 1
else return i; 1 0 0

} 0 0 0
Total n + 3

TABLE 1.2 Worst-case step count for Figure 1.3

Statement s/e Frequency Total steps
int sequentialSearch(· · · ) 0 0 0
{ 0 0 0

int i; 1 1 1
for (i = 0; i < n && x != a[i]; i++); 1 j + 1 j + 1
if (i == n) return -1; 1 1 1
else return i; 1 1 1

} 0 0 0
Total j + 4

TABLE 1.3 Step count for Figure 1.3 when x = a[j]

Example 1.4

[Sequential Search] Tables 1.1 and 1.2 show the best- and worst-case step-count analyses

For the average step-count analysis for a successful search, we assume that the n values
in a are distinct and that in a successful search, x has an equal probability of being any one
of these values. Under these assumptions the average step count for a successful search is
the sum of the step counts for the n possible successful searches divided by n. To obtain
this average, we first obtain the step count for the case x = a[j] where j is in the range

Now we obtain the average step count for a successful search:

1
n

n−1∑

j=0

(j + 4) = (n + 7)/2

This value is a little more than half the step count for an unsuccessful search.
Now suppose that successful searches occur only 80 percent of the time and that each

a[i] still has the same probability of being searched for. The average step count for
sequentialSearch is
.8 ∗ (average count for successful searches) + .2 ∗ (count for an unsuccessful search)
= .8(n + 7)/2 + .2(n + 3)
= .6n + 3.4
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[0, n − 1] (see Table 1.3).

Best-case step count for Figure 1.3

for sequentialSearch (Figure 1.3).



1-6 Handbook of Data Structures and Applications

1.4 Counting Cache Misses

1.4.1 A Simple Computer Model

Traditionally, the focus of algorithm analysis has been on counting operations and steps.
Such a focus was justified when computers took more time to perform an operation than
they took to fetch the data needed for that operation. Today, however, the cost of per-
forming an operation is significantly lower than the cost of fetching data from memory.
Consequently, the run time of many algorithms is dominated by the number of memory
references (equivalently, number of cache misses) rather than by the number of operations.
Hence, algorithm designers focus on reducing not only the number of operations but also
the number of memory accesses. Algorithm designers focus also on designing algorithms
that hide memory latency.

Consider a simple computer model in which the computer’s memory consists of an L1
(level 1) cache, an L2 cache, and main memory. Arithmetic and logical operations are per-
formed by the arithmetic and logic unit (ALU) on data resident in registers (R). Figure 1.5
gives a block diagram for our simple computer model.

main
memoryL2L1R

ALU

FIGURE 1.5: A simple computer model.

Typically, the size of main memory is tens or hundreds of megabytes; L2 cache sizes are
typically a fraction of a megabyte; L1 cache is usually in the tens of kilobytes; and the
number of registers is between 8 and 32. When you start your program, all your data are
in main memory.

To perform an arithmetic operation such as an add, in our computer model, the data to
be added are first loaded from memory into registers, the data in the registers are added,
and the result is written to memory.

Let one cycle be the length of time it takes to add data that are already in registers.
The time needed to load data from L1 cache to a register is two cycles in our model. If the
required data are not in L1 cache but are in L2 cache, we get an L1 cache miss and the
required data are copied from L2 cache to L1 cache and the register in 10 cycles. When the
required data are not in L2 cache either, we have an L2 cache miss and the required data
are copied from main memory into L2 cache, L1 cache, and the register in 100 cycles. The
write operation is counted as one cycle even when the data are written to main memory
because we do not wait for the write to complete before proceeding to the next operation.

1.4.2 Effect of Cache Misses on Run Time

For our simple model, the statement a = b + c is compiled into the computer instructions

load a; load b; add; store c;

© 2005 by Chapman & Hall/CRC

For more details on cache organization, see [2].



Analysis of Algorithms 1-7

where the load operations load data into registers and the store operation writes the result
of the add to memory. The add and the store together take two cycles. The two loads
may take anywhere from 4 cycles to 200 cycles depending on whether we get no cache miss,
L1 misses, or L2 misses. So the total time for the statement a = b + c varies from 6 cycles
to 202 cycles. In practice, the variation in time is not as extreme because we can overlap
the time spent on successive cache misses.

Suppose that we have two algorithms that perform the same task. The first algorithm
does 2000 adds that require 4000 load, 2000 add, and 2000 store operations and the second
algorithm does 1000 adds. The data access pattern for the first algorithm is such that 25
percent of the loads result in an L1 miss and another 25 percent result in an L2 miss. For
our simplistic computer model, the time required by the first algorithm is 2000 ∗ 2 (for the
50 percent loads that cause no cache miss) + 1000∗10 (for the 25 percent loads that cause
an L1 miss) + 1000 ∗ 100 (for the 25 percent loads that cause an L2 miss) + 2000 ∗ 1 (for
the adds) + 2000 ∗ 1 (for the stores) = 118,000 cycles. If the second algorithm has 100
percent L2 misses, it will take 2000 ∗ 100 (L2 misses) + 1000 ∗ 1 (adds) + 1000 ∗ 1 (stores)
= 202,000 cycles. So the second algorithm, which does half the work done by the first,
actually takes 76 percent more time than is taken by the first algorithm.

Computers use a number of strategies (such as preloading data that will be needed in
the near future into cache, and when a cache miss occurs, the needed data as well as data
in some number of adjacent bytes are loaded into cache) to reduce the number of cache
misses and hence reduce the run time of a program. These strategies are most effective
when successive computer operations use adjacent bytes of main memory.

Although our discussion has focused on how cache is used for data, computers also use
cache to reduce the time needed to access instructions.

1.4.3 Matrix Multiplication

The algorithm of Figure 1.6 multiplies two square matrices that are represented as two-
dimensional arrays. It performs the following computation:

c[i][j] =
n∑

k=1

a[i][k] ∗ b[k][j], 1 ≤ i ≤ n, 1 ≤ j ≤ n (1.1)

void squareMultiply(int [][] a, int [][] b, int [][] c, int n)
{

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{

int sum = 0;
for (int k = 0; k < n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

FIGURE 1.6: Multiply two n × n matrices.

© 2005 by Chapman & Hall/CRC
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Figure 1.7 is an alternative algorithm that produces the same two-dimensional array c as

not present in Figure 1.6 and does more work than is done by Figure 1.6 with respect to
indexing into the array c. The remainder of the work is the same.

void fastSquareMultiply(int [][] a, int [][] b, int [][] c, int n)
{

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

c[i][j] = 0;

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; k < n; k++)
c[i][j] += a[i][k] * b[k][j];

}

FIGURE 1.7: Alternative algorithm to multiply square matrices.

You will notice that if you permute the order of the three nested for loops in Figure 1.7,
you do not affect the result array c. We refer to the loop order in Figure 1.7 as ijk order.
When we swap the second and third for loops, we get ikj order. In all, there are 3! = 6
ways in which we can order the three nested for loops. All six orderings result in methods
that perform exactly the same number of operations of each type. So you might think all
six take the same time. Not so. By changing the order of the loops, we change the data
access pattern and so change the number of cache misses. This in turn affects the run time.

In ijk order, we access the elements of a and c by rows; the elements of b are accessed
by column. Since elements in the same row are in adjacent memory and elements in the
same column are far apart in memory, the accesses of b are likely to result in many L2 cache
misses when the matrix size is too large for the three arrays to fit into L2 cache. In ikj
order, the elements of a, b, and c are accessed by rows. Therefore, ikj order is likely to
result in fewer L2 cache misses and so has the potential to take much less time than taken
by ijk order.

For a crude analysis of the number of cache misses, assume we are interested only in L2
misses; that an L2 cache-line can hold w matrix elements; when an L2 cache-miss occurs,
a block of w matrix elements is brought into an L2 cache line; and that L2 cache is small
compared to the size of a matrix. Under these assumptions, the accesses to the elements of
a, b and c in ijk order, respectively, result in n3/w, n3, and n2/w L2 misses. Therefore,
the total number of L2 misses in ijk order is n3(1+w +1/n)/w. In ikj order, the number
of L2 misses for our three matrices is n2/w, n3/w, and n3/w, respectively. So, in ikj order,
the total number of L2 misses is n3(2 + 1/n)/w. When n is large, the ration of ijk misses
to ikj misses is approximately (1 + w)/2, which is 2.5 when w = 4 (for example when we
have a 32-byte cache line and the data is double precision) and 4.5 when w = 8 (for example
when we have a 64-byte cache line and double-precision data). For a 64-byte cache line and
single-precision (i.e., 4 byte) data, w = 16 and the ratio is approximately 8.5.

The

© 2005 by Chapman & Hall/CRC

We observe that Figure 1.7 has two nested for loops that areis produced by Figure 1.6.

algorithms.
Figure 1.8 shows the normalized run times of a Java version of our matrix multiplication

In this figure, mult refers to the multiplication algorithm of Figure 1.6.
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normalized run time of a method is the time taken by the method divided by the time taken
by ikj order.

n = 500 n = 1000 n = 2000
0

1
1.1
1.2

mult ijk ikj

FIGURE 1.8: Normalized run times for matrix multiplication.

Matrix multiplication using ikj order takes 10 percent less time than does ijk order
when the matrix size is n = 500 and 16 percent less time when the matrix size is 2000.

5 percent when n = 2000). This despite the fact that ikj order does more work than is
done by the algorithm of Figure 1.6.

1.5 Asymptotic Complexity

1.5.1 Big Oh Notation (O)

Let p(n) and q(n) be two nonnegative functions. p(n) is asymptotically bigger (p(n)
asymptotically dominates q(n)) than the function q(n) iff

lim
n→∞

q(n)
p(n)

= 0 (1.2)

q(n) is asymptotically smaller than p(n) iff p(n) is asymptotically bigger than q(n).
p(n) and q(n) are asymptotically equal iff neither is asymptotically bigger than the other.

Example 1.5

Since

lim
n→∞

10n + 7
3n2 + 2n + 6

=
10/n + 7/n2

3 + 2/n + 6/n2
= 0/3 = 0

3n2 + 2n + 6 is asymptotically bigger than 10n + 7 and 10n + 7 is asymptotically smaller
than 3n2 + 2n+ 6. A similar derivation shows that 8n4 + 9n2 is asymptotically bigger than
100n3 − 3, and that 2n2 + 3n is asymptotically bigger than 83n. 12n + 6 is asymptotically
equal to 6n + 2.

In the following discussion the function f(n) denotes the time or space complexity of
an algorithm as a function of the problem size n. Since the time or space requirements of

© 2005 by Chapman & Hall/CRC
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a program are nonnegative quantities, we assume that the function f has a nonnegative
value for all values of n. Further, since n denotes an instance characteristic, we assume that
n ≥ 0. The function f(n) will, in general, be a sum of terms. For example, the terms of
f(n) = 9n2 + 3n + 12 are 9n2, 3n, and 12. We may compare pairs of terms to determine
which is bigger. The biggest term in the example f(n) is 9n2.

Figure 1.9 gives the terms that occur frequently in a step-count analysis. Although all
the terms in Figure 1.9 have a coefficient of 1, in an actual analysis, the coefficients of these
terms may have a different value.

Term Name
1 constant
log n logarithmic
n linear
n log n n log n
n2 quadratic
n3 cubic
2n exponential
n! factorial

FIGURE 1.9: Commonly occurring terms.

We do not associate a logarithmic base with the functions in Figure 1.9 that include log n
because for any constants a and b greater than 1, loga n = logb n/ logb a. So loga n and
logb n are asymptotically equal.

The definition of asymptotically smaller implies the following ordering for the terms of
Figure 1.9 (< is to be read as “is asymptotically smaller than”):

1 < log n < n < n log n < n2 < n3 < 2n < n!

Asymptotic notation describes the behavior of the time or space complexity for large
instance characteristics. Although we will develop asymptotic notation with reference to
step counts alone, our development also applies to space complexity and operation counts.

The notation f(n) = O(g(n)) (read as “f(n) is big oh of g(n)”) means that f(n) is
asymptotically smaller than or equal to g(n). Therefore, in an asymptotic sense g(n) is an
upper bound for f(n).

Example 1.6

From Example 1.5, it follows that 10n+7 = O(3n2+2n+6); 100n3−3 = O(8n4 +9n2). We
see also that 12n+6 = O(6n+2); 3n2 +2n+6 �= O(10n+7); and 8n4+9n2 �= O(100n3−3).

Although Example 1.6 uses the big oh notation in a correct way, it is customary to use
g(n) functions that are unit terms (i.e., g(n) is a single term whose coefficient is 1) except
when f(n) = 0. In addition, it is customary to use, for g(n), the smallest unit term for which
the statement f(n) = O(g(n)) is true. When f(n) = 0, it is customary to use g(n) = 0.

Example 1.7

The customary way to describe the asymptotic behavior of the functions used in Example 1.6
is 10n + 7 = O(n); 100n3 − 3 = O(n3); 12n + 6 = O(n); 3n2 + 2n + 6 �= O(n); and
8n4 + 9n2 �= O(n3).

© 2005 by Chapman & Hall/CRC
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In asymptotic complexity analysis, we determine the biggest term in the complexity;
the coefficient of this biggest term is set to 1. The unit terms of a step-count function
are step-count terms with their coefficients changed to 1. For example, the unit terms of
3n2 + 6n log n + 7n + 5 are n2, n log n, n, and 1; the biggest unit term is n2. So when the
step count of a program is 3n2 + 6n logn + 7n + 5, we say that its asymptotic complexity
is O(n2).

Notice that f(n) = O(g(n)) is not the same as O(g(n)) = f(n). In fact, saying that
O(g(n)) = f(n) is meaningless. The use of the symbol = is unfortunate, as this symbol
commonly denotes the equals relation. We can avoid some of the confusion that results
from the use of this symbol (which is standard terminology) by reading the symbol = as
“is” and not as “equals.”

1.5.2 Omega (Ω) and Theta (Θ) Notations

Although the big oh notation is the most frequently used asymptotic notation, the omega
and theta notations are sometimes used to describe the asymptotic complexity of a program.

The notation f(n) = Ω(g(n)) (read as “f(n) is omega of g(n)”) means that f(n) is
asymptotically bigger than or equal to g(n). Therefore, in an asymptotic sense, g(n) is a
lower bound for f(n). The notation f(n) = Θ(g(n)) (read as “f(n) is theta of g(n)”) means
that f(n) is asymptotically equal to g(n).

Example 1.8

10n+7 = Ω(n) because 10n+7 is asymptotically equal to n; 100n3− 3 = Ω(n3); 12n+6 =
Ω(n); 3n3+2n+6 = Ω(n); 8n4+9n2 = Ω(n3); 3n3+2n+6 �= Ω(n5); and 8n4+9n2 �= Ω(n5).

10n + 7 = Θ(n) because 10n + 7 is asymptotically equal to n; 100n3 − 3 = Θ(n3);
12n + 6 = Θ(n); 3n3 + 2n + 6 �= Θ(n); 8n4 + 9n2 �= Θ(n3); 3n3 + 2n + 6 �= Θ(n5); and
8n4 + 9n2 �= Θ(n5).

case step count is n+3, and the average step count is 0.6n+3.4. So the best-case asymptotic
complexity of sequentialSearch is Θ(1), and the worst-case and average complexities are
Θ(n). It is also correct to say that the complexity of sequentialSearch is Ω(1) and O(n)
because 1 is a lower bound (in an asymptotic sense) and n is an upper bound (in an
asymptotic sense) on the step count.

When using the Ω notation, it is customary to use, for g(n), the largest unit term for
which the statement f(n) = Ω(g(n)) is true.

At times it is useful to interpret O(g(n)), Ω(g(n)), and Θ(g(n)) as being the following
sets:

O(g(n)) = {f(n)|f(n) = O(g(n))}

Ω(g(n)) = {f(n)|f(n) = Ω(g(n))}

Θ(g(n)) = {f(n)|f(n) = Θ(g(n))}
Under this interpretation, statements such as O(g1(n)) = O(g2(n)) and Θ(g1(n)) =

Θ(g2(n)) are meaningful. When using this interpretation, it is also convenient to read
f(n) = O(g(n)) as “f of n is in (or is a member of) big oh of g of n” and so on.

© 2005 by Chapman & Hall/CRC
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1.5.3 Little Oh Notation (o)

The little oh notation describes a strict upper bound on the asymptotic growth rate of the
function f . f(n) is little oh of g(n) iff f(n) is asymptotically smaller than g(n). Equivalently,
f(n) = o(g(n)) (read as “f of n is little oh of g of n”) iff f(n) = O(g(n)) and f(n) �= Ω(g(n)).

Example 1.9

[Little oh] 3n+2 = o(n2) as 3n+2 = O(n2) and 3n+2 �= Ω(n2). However, 3n+2 �= o(n).
Similarly, 10n2 + 4n + 2 = o(n3), but is not o(n2).

The little oh notation is often used in step-count analyses. A step count of 3n + o(n)
would mean that the step count is 3n plus terms that are asymptotically smaller than n.
When performing such an analysis, one can ignore portions of the program that are known
to contribute less than Θ(n) steps.

1.6 Recurrence Equations

Recurrence equations arise frequently in the analysis of algorithms, particularly in the
analysis of recursive as well as divide-and-conquer algorithms.

Example 1.10

[Binary Search] Consider a binary search of the sorted array a[l : r], where n = r− l +1 ≥ 0,
for the element x. When n = 0, the search is unsuccessful and when n = 1, we compare x
and a[l]. When n > 1, we compare x with the element a[m] (m = �(l + r)/2�) in the middle
of the array. If the compared elements are equal, the search terminates; if x < a[m], we
search a[l : m− 1]; otherwise, we search a[m + 1 : r]. Let t(n) be the worst-case complexity
of binary search. Assuming that t(0) = t(1), we obtain the following recurrence.

t(n) =
{

t(1) n ≤ 1
t(�n/2�) + c n > 1 (1.3)

where c is a constant.

Example 1.11

[Merge Sort] In a merge sort of a[0 : n − 1], n ≥ 1, we consider two cases. When n = 1,
no work is to be done as a one-element array is always in sorted order. When n > 1, we
divide a into two parts of roughly the same size, sort these two parts using the merge sort
method recursively, then finally merge the sorted parts to obtain the desired sorted array.
Since the time to do the final merge is Θ(n) and the dividing into two roughly equal parts
takes O(1) time, the complexity, t(n), of merge sort is given by the recurrence:

t(n) =
{

t(1) n = 1
t(�n/2�) + t(�n/2�) + cn n > 1 (1.4)

where c is a constant.

Solving recurrence equations such as Equations 1.3 and 1.4 for t(n) is complicated by the
presence of the floor and ceiling functions. By making an appropriate assumption on the
permissible values of n, these functions may be eliminated to obtain a simplified recurrence.
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In the case of Equations 1.3 and 1.4 an assumption such as n is a power of 2 results in the
simplified recurrences:

t(n) =
{

t(1) n ≤ 1
t(n/2) + c n > 1 (1.5)

and

t(n) =
{

t(1) n = 1
2t(n/2) + cn n > 1 (1.6)

Several techniques—substitution, table lookup, induction, characteristic roots, and gen-
erating functions—are available to solve recurrence equations. We describe only the substi-
tution and table lookup methods.

1.6.1 Substitution Method

In the substitution method, recurrences such as Equations 1.5 and 1.6 are solved by re-
peatedly substituting right-side occurrences (occurrences to the right of =) of t(x), x > 1,
with expressions involving t(y), y < x. The substitution process terminates when the only
occurrences of t(x) that remain on the right side have x = 1.

Consider the binary search recurrence of Equation 1.5. Repeatedly substituting for t()
on the right side, we get

t(n) = t(n/2) + c

= (t(n/4) + c) + c

= t(n/4) + 2c

= t(n/8) + 3c

...
= t(1) + c log2 n

= Θ(log n)

For the merge sort recurrence of Equation 1.6, we get

t(n) = 2t(n/2) + cn

= 2(2t(n/4) + cn/2) + cn

= 4t(n/4) + 2cn

= 4(2t(n/8) + cn/4) + 2cn

= 8t(n/8) + 3cn

...
= nt(1) + cn log2 n

= Θ(n log n)

1.6.2 Table-Lookup Method

The complexity of many divide-and-conquer algorithms is given by a recurrence of the form

t(n) =
{

t(1) n = 1
a ∗ t(n/b) + g(n) n > 1 (1.7)
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h(n) f(n)

O(nr), r < 0 O(1)

Θ((log n)i), i ≥ 0 Θ(((log n)i+1)/(i + 1))

Ω(nr), r > 0 Θ(h(n))

TABLE 1.4 f(n) values for various h(n) values

where a and b are known constants. The merge sort recurrence, Equation 1.6, is in this
form. Although the recurrence for binary search, Equation 1.5, isn’t exactly in this form,
the n ≤ 1 may be changed to n = 1 by eliminating the case n = 0. To solve Equation 1.7, we
assume that t(1) is known and that n is a power of b (i.e., n = bk). Using the substitution
method, we can show that

t(n) = nlogb a[t(1) + f(n)] (1.8)

where f(n) =
∑k

j=1 h(bj) and h(n) = g(n)/nlogb a.
Table 1.4 tabulates the asymptotic value of f(n) for various values of h(n). This table

allows us to easily obtain the asymptotic value of t(n) for many of the recurrences we
encounter when analyzing divide-and-conquer algorithms.

Let us solve the binary search and merge sort recurrences using this table. Comparing
Equation 1.5 with n ≤ 1 replaced by n = 1 with Equation 1.7, we see that a = 1, b = 2, and
g(n) = c. Therefore, logb(a) = 0, and h(n) = g(n)/nlogb a = c = c(log n)0 = Θ((log n)0).
From Table 1.4, we obtain f(n) = Θ(log n). Therefore, t(n) = nlogb a(c + Θ(log n)) =
Θ(log n).

For the merge sort recurrence, Equation 1.6, we obtain a = 2, b = 2, and g(n) = cn.
So logb a = 1 and h(n) = g(n)/n = c = Θ((log n)0). Hence f(n) = Θ(log n) and t(n) =
n(t(1) + Θ(logn)) = Θ(n logn).

1.7 Amortized Complexity

1.7.1 What is Amortized Complexity?

The complexity of an algorithm or of an operation such as an insert, search, or delete, as
defined in Section 1.1, is the actual complexity of the algorithm or operation. The actual
complexity of an operation is determined by the step count for that operation, and the actual
complexity of a sequence of operations is determined by the step count for that sequence.
The actual complexity of a sequence of operations may be determined by adding together
the step counts for the individual operations in the sequence. Typically, determining the
step count for each operation in the sequence is quite difficult, and instead, we obtain an
upper bound on the step count for the sequence by adding together the worst-case step
count for each operation.

When determining the complexity of a sequence of operations, we can, at times, obtain
tighter bounds using amortized complexity rather than worst-case complexity. Unlike the
actual and worst-case complexities of an operation which are closely related to the step
count for that operation, the amortized complexity of an operation is an accounting artifact
that often bears no direct relationship to the actual complexity of that operation. The
amortized complexity of an operation could be anything. The only requirement is that the
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sum of the amortized complexities of all operations in the sequence be greater than or equal
to the sum of the actual complexities. That is

∑

1≤i≤n

amortized(i) ≥
∑

1≤i≤n

actual(i) (1.9)

where amortized(i) and actual(i), respectively, denote the amortized and actual complexi-
ties of the ith operation in a sequence of n operations. Because of this requirement on the
sum of the amortized complexities of the operations in any sequence of operations, we may
use the sum of the amortized complexities as an upper bound on the complexity of any
sequence of operations.

You may view the amortized cost of an operation as being the amount you charge the
operation rather than the amount the operation costs. You can charge an operation any
amount you wish so long as the amount charged to all operations in the sequence is at least
equal to the actual cost of the operation sequence.

Relative to the actual and amortized costs of each operation in a sequence of n operations,
we define a potential function P (i) as below

P (i) = amortized(i) − actual(i) + P (i − 1) (1.10)

That is, the ith operation causes the potential function to change by the difference be-
tween the amortized and actual costs of that operation. If we sum Equation 1.10 for
1 ≤ i ≤ n, we get

∑

1≤i≤n

P (i) =
∑

1≤i≤n

(amortized(i) − actual(i) + P (i − 1))

or

∑

1≤i≤n

(P (i) − P (i − 1)) =
∑

1≤i≤n

(amortized(i) − actual(i))

or

P (n) − P (0) =
∑

1≤i≤n

(amortized(i) − actual(i))

From Equation 1.9, it follows that

P (n) − P (0) ≥ 0 (1.11)

When P (0) = 0, the potential P (i) is the amount by which the first i operations have
been overcharged (i.e., they have been charged more than their actual cost).

Generally, when we analyze the complexity of a sequence of n operations, n can be any
nonnegative integer. Therefore, Equation 1.11 must hold for all nonnegative integers.

The preceding discussion leads us to the following three methods to arrive at amortized
costs for operations:

1. Aggregate Method
In the aggregate method, we determine an upper bound for the sum of the actual
costs of the n operations. The amortized cost of each operation is set equal to
this upper bound divided by n. You may verify that this assignment of amortized
costs satisfies Equation 1.9 and is, therefore, valid.
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2. Accounting Method
In this method, we assign amortized costs to the operations (probably by guessing
what assignment will work), compute the P (i)s using Equation 1.10, and show
that P (n) − P (0) ≥ 0.

3. Potential Method
Here, we start with a potential function (probably obtained using good guess
work) that satisfies Equation 1.11 and compute the amortized complexities using
Equation 1.10.

1.7.2 Maintenance Contract

Problem Definition

In January, you buy a new car from a dealer who offers you the following maintenance
contract: $50 each month other than March, June, September and December (this covers
an oil change and general inspection), $100 every March, June, and September (this covers
an oil change, a minor tune-up, and a general inspection), and $200 every December (this
covers an oil change, a major tune-up, and a general inspection). We are to obtain an upper
bound on the cost of this maintenance contract as a function of the number of months.

Worst-Case Method

We can bound the contract cost for the first n months by taking the product of n
and the maximum cost incurred in any month (i.e., $200). This would be analogous to the
traditional way to estimate the complexity–take the product of the number of operations
and the worst-case complexity of an operation. Using this approach, we get $200n as an
upper bound on the contract cost. The upper bound is correct because the actual cost for
n months does not exceed $200n.

Aggregate Method

To use the aggregate method for amortized complexity, we first determine an upper
bound on the sum of the costs for the first n months. As tight a bound as is possible is
desired. The sum of the actual monthly costs of the contract for the first n months is

200 ∗ �n/12� + 100 ∗ (�n/3� − �n/12�) + 50 ∗ (n − �n/3�)
= 100 ∗ �n/12�+ 50 ∗ �n/3�+ 50 ∗ n

≤ 100 ∗ n/12 + 50 ∗ n/3 + 50 ∗ n

= 50n(1/6 + 1/3 + 1)
= 50n(3/2)
= 75n

The amortized cost for each month is set to $75.
amortized costs, and the potential function value (assuming P (0) = 0) for the first 16
months of the contract.

Notice that some months are charged more than their actual costs and others are charged
less than their actual cost. The cumulative difference between what the operations are
charged and their actual costs is given by the potential function. The potential function
satisfies Equation 1.11 for all values of n. When we use the amortized cost of $75 per month,
we get $75n as an upper bound on the contract cost for n months. This bound is tighter
than the bound of $200n obtained using the worst-case monthly cost.
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month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
actual cost 50 50 100 50 50 100 50 50 100 50 50 200 50 50 100 50
amortized cost 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
P() 25 50 25 50 75 50 75 100 75 100 125 0 25 50 25 50

TABLE 1.5 Maintenance contract

Accounting Method

When we use the accounting method, we must first assign an amortized cost for each
month and then show that this assignment satisfies Equation 1.11. We have the option to
assign a different amortized cost to each month. In our maintenance contract example, we
know the actual cost by month and could use this actual cost as the amortized cost. It
is, however, easier to work with an equal cost assignment for each month. Later, we shall
see examples of operation sequences that consist of two or more types of operations (for
example, when dealing with lists of elements, the operation sequence may be made up of
search, insert, and remove operations). When dealing with such sequences we often assign
a different amortized cost to operations of different types (however, operations of the same
type have the same amortized cost).

To get the best upper bound on the sum of the actual costs, we must set the amortized
monthly cost to be the smallest number for which Equation 1.11 is satisfied for all n. From
the above table, we see that using any cost less than $75 will result in P (n) − P (0) < 0
for some values of n. Therefore, the smallest assignable amortized cost consistent with
Equation 1.11 is $75.

Generally, when the accounting method is used, we have not computed the aggregate
cost. Therefore, we would not know that $75 is the least assignable amortized cost. So we
start by assigning an amortized cost (obtained by making an educated guess) to each of the
different operation types and then proceed to show that this assignment of amortized costs
satisfies Equation 1.11. Once we have shown this, we can obtain an upper bound on the
cost of any operation sequence by computing

∑

1≤i≤k

f(i) ∗ amortized(i)

where k is the number of different operation types and f(i) is the frequency of operation
type i (i.e., the number of times operations of this type occur in the operation sequence).

For our maintenance contract example, we might try an amortized cost of $70. When
we use this amortized cost, we discover that Equation 1.11 is not satisfied for n = 12 (for
example) and so $70 is an invalid amortized cost assignment. We might next try $80. By
constructing a table such as the one above, we will observe that Equation 1.11 is satisfied
for all months in the first 12 month cycle, and then conclude that the equation is satisfied
for all n. Now, we can use $80n as an upper bound on the contract cost for n months.

Potential Method

We first define a potential function for the analysis. The only guideline you have
in defining this function is that the potential function represents the cumulative difference
between the amortized and actual costs. So, if you have an amortized cost in mind, you may
be able to use this knowledge to develop a potential function that satisfies Equation 1.11,
and then use the potential function and the actual operation costs (or an upper bound on
these actual costs) to verify the amortized costs.

If we are extremely experienced, we might start with the potential function
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t(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 n mod 12 = 0
25 n mod 12 = 1 or 3
50 n mod 12 = 2, 4, or 6
75 n mod 12 = 5, 7, or 9
100 n mod 12 = 8 or 10
125 n mod 12 = 11

take quite some ingenuity to come up with this potential function. Having formulated a
potential function and verified that this potential function satisfies Equation 1.11 for all n,
we proceed to use Equation 1.10 to determine the amortized costs.

From Equation 1.10, we obtain amortized(i) = actual(i) + P (i) − P (i − 1). Therefore,

amortized(1) = actual(1) + P (1) − P (0) = 50 + 25 − 0 = 75
amortized(2) = actual(2) + P (2) − P (1) = 50 + 50 − 25 = 75
amortized(3) = actual(3) + P (3) − P (2) = 100 + 25 − 50 = 75

and so on. Therefore, the amortized cost for each month is $75. So, the actual cost for n
months is at most $75n.

1.7.3 The McWidget Company

Problem Definition

The famous McWidget company manufactures widgets. At its headquarters, the com-
pany has a large display that shows how many widgets have been manufactured so far.
Each time a widget is manufactured, a maintenance person updates this display. The cost
for this update is $c+dm, where c is a fixed trip charge, d is a charge per display digit that
is to be changed, and m is the number of digits that are to be changed. For example, when
the display is changed from 1399 to 1400, the cost to the company is $c + 3d because 3
digits must be changed. The McWidget company wishes to amortize the cost of maintain-
ing the display over the widgets that are manufactured, charging the same amount to each
widget. More precisely, we are looking for an amount $e = amortized(i) that should levied
against each widget so that the sum of these charges equals or exceeds the actual cost of
maintaining/updating the display ($e ∗n ≥ actual total cost incurred for first n widgets for
all n ≥ 1). To keep the overall selling price of a widget low, we wish to find as small an e
as possible. Clearly, e > c + d because each time a widget is made, at least one digit (the
least significant one) has to be changed.

Worst-Case Method

This method does not work well in this application because there is no finite worst-case
cost for a single display update. As more and more widgets are manufactured, the number
of digits that need to be changed increases. For example, when the 1000th widget is made,
4 digits are to be changed incurring a cost of c + 4d, and when the 1,000,000th widget is
made, 7 digits are to be changed incurring a cost of c+7d. If we use the worst-case method,
the amortized cost to each widget becomes infinity.
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widget 1 2 3 4 5 6 7 8 9 10 11 12 13 14
actual cost 1 1 1 1 1 1 1 1 1 2 1 1 1 1
amortized cost— 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
P() 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96 1.08 0.20 0.32 0.44 0.56 0.68

widget 15 16 17 18 19 20 21 22 23 24 25 26 27 28
actual cost 1 1 1 1 1 2 1 1 1 1 1 1 1 1
amortized cost— 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
P() 0.80 0.92 1.04 1.16 1.28 0.40 0.52 0.64 0.76 0.88 1.00 1.12 1.24 1.36

TABLE 1.6 Data for widgets

Aggregate Method

Let n be the number of widgets made so far. As noted earlier, the least significant
digit of the display has been changed n times. The digit in the ten’s place changes once
for every ten widgets made, that in the hundred’s place changes once for every hundred
widgets made, that in the thousand’s place changes once for every thousand widgets made,
and so on. Therefore, the aggregate number of digits that have changed is bounded by

n(1 + 1/10 + 1/100 + 1/1000 + ...) = (1.11111...)n

So, the amortized cost of updating the display is $c + d(1.11111...)n/n < c + 1.12d. If the
McWidget company adds $c+1.12d to the selling price of each widget, it will collect enough
money to pay for the cost of maintaining the display. Each widget is charged the cost of
changing 1.12 digits regardless of the number of digits that are actually changed. Table 1.6
shows the actual cost, as measured by the number of digits that change, of maintaining the
display, the amortized cost (i.e., 1.12 digits per widget), and the potential function. The
potential function gives the difference between the sum of the amortized costs and the sum
of the actual costs. Notice how the potential function builds up so that when it comes
time to pay for changing two digits, the previous potential function value plus the current
amortized cost exceeds 2. From our derivation of the amortized cost, it follows that the
potential function is always nonnegative.

Accounting Method

We begin by assigning an amortized cost to the individual operations, and then we
show that these assigned costs satisfy Equation 1.11. Having already done an amortized
analysis using the aggregate method, we see that Equation 1.11 is satisfied when we assign
an amortized cost of $c + 1.12d to each display change. Typically, however, the use of the
accounting method is not preceded by an application of the aggregate method and we start
by guessing an amortized cost and then showing that this guess satisfies Equation 1.11.

Suppose we assign a guessed amortized cost of $c + 2d for each display change.

P (n) − P (0) =
∑

1≤i≤n

(amortized(i) − actual(i))

= (c + 2d)n −
∑

1≤i≤n

actual(i)

= (c + 2d)n − (c + (1 + 1/10 + 1/100 + ...)d)n
≥ (c + 2d)n − (c + 1.12d)n
≥ 0

This analysis also shows us that we can reduce the amortized cost of a widget to $c+1.12d.
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An alternative proof method that is useful in some analyses involves distributing the
excess charge P (i) − P (0) over various accounting entities, and using these stored excess
charges (called credits) to establish P (i + 1) − P (0) ≥ 0. For our McWidget example, we
use the display digits as the accounting entities. Initially, each digit is 0 and each digit
has a credit of 0 dollars. Suppose we have guessed an amortized cost of $c + (1.111...)d.
When the first widget is manufactured, $c + d of the amortized cost is used to pay for the
update of the display and the remaining $(0.111...)d of the amortized cost is retained as
a credit by the least significant digit of the display. Similarly, when the second through
ninth widgets are manufactured, $c + d of the amortized cost is used to pay for the update
of the display and the remaining $(0.111...)d of the amortized cost is retained as a credit
by the least significant digit of the display. Following the manufacture of the ninth widget,
the least significant digit of the display has a credit of $(0.999...)d and the remaining digits
have no credit. When the tenth widget is manufactured, $c + d of the amortized cost are
used to pay for the trip charge and the cost of changing the least significant digit. The least
significant digit now has a credit of $(1.111...)d. Of this credit, $d are used to pay for the
change of the next least significant digit (i.e., the digit in the ten’s place), and the remaining
$(0.111...)d are transferred to the ten’s digit as a credit. Continuing in this way, we see
that when the display shows 99, the credit on the ten’s digit is $(0.999...)d and that on the
one’s digit (i.e., the least significant digit) is also $(0.999...)d. When the 100th widget is
manufactured, $c + d of the amortized cost are used to pay for the trip charge and the cost
of changing the least significant digit, and the credit on the least significant digit becomes
$(1.111...)d. Of this credit, $d are used to pay for the change of the ten’s digit from 9 to
0, the remaining $(0.111...)d credit on the one’s digit is transferred to the ten’s digit. The
credit on the ten’s digit now becomes $(1.111...)d. Of this credit, $d are used to pay for
the change of the hundred’s digit from 0 to 1, the remaining $(0.111...)d credit on the ten’s
digit is transferred to the hundred’s digit.

The above accounting scheme ensures that the credit on each digit of the display always
equals $(0.111...)dv, where v is the value of the digit (e.g., when the display is 206 the
credit on the one’s digit is $(0.666...)d, the credit on the ten’s digit is $0, and that on the
hundred’s digit is $(0.222...)d.

From the preceding discussion, it follows that P (n) − P (0) equals the sum of the digit
credits and this sum is always nonnegative. Therefore, Equation 1.11 holds for all n.

Potential Method

We first postulate a potential function that satisfies Equation 1.11, and then use
this function to obtain the amortized costs. From the alternative proof used above for
the accounting method, we can see that we should use the potential function P (n) =
(0.111...)d

∑
i vi, where vi is the value of the ith digit of the display. For example, when the

display shows 206 (at this time n = 206), the potential function value is (0.888...)d. This
potential function satisfies Equation 1.11.

Let q be the number of 9s at the right end of j (i.e., when j = 12903999, q = 3). When
the display changes from j to j + 1, the potential change is (0.111...)d(1 − 9q) and the
actual cost of updating the display is $c + (q + 1)d. From Equation 1.10, it follows that the
amortized cost for the display change is

actual cost + potential change = c + (q + 1)d + (0.111...)d(1 − 9q) = c + (1.111...)d
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1.7.4 Subset Generation

Problem Definition

The subsets of a set of n elements are defined by the 2n vectors x[1 : n], where each
x[i] is either 0 or 1. x[i] = 1 iff the ith element of the set is a member of the subset. The
subsets of a set of three elements are given by the eight vectors 000, 001, 010, 011, 100, 101,
110, and 111, for example. Starting with an array x[1 : n] has been initialized to zeroes
(this represents the empty subset), each invocation of algorithm nextSubset (Figure 1.10)
returns the next subset. When all subsets have been generated, this algorithm returns null.

public int [] nextSubset()
{// return next subset; return null if no next subset

// generate next subset by adding 1 to the binary number x[1:n]
int i = n;
while (i > 0 && x[i] == 1)

{x[i] = 0; i--;}

if (i == 0) return null;
else {x[i] = 1; return x;}

}

FIGURE 1.10: Subset enumerator.

We wish to determine how much time it takes to generate the first m, 1 ≤ m ≤ 2n

subsets. This is the time for the first m invocations of nextSubset.

Worst-Case Method

The complexity of nextSubset is Θ(c), where c is the number of x[i]s that change.
Since all n of the x[i]s could change in a single invocation of nextSubset, the worst-case
complexity of nextSubset is Θ(n). Using the worst-case method, the time required to
generate the first m subsets is O(mn).

Aggregate Method

The complexity of nextSubset equals the number of x[i]s that change. When nextSubset
is invoked m times, x[n] changes m times; x[n − 1] changes �m/2� times; x[n − 2] changes
�m/4� times; x[n−3] changes �m/8� times; and so on. Therefore, the sum of the actual costs
of the first m invocations is

∑
0≤i≤�log2 m�(m/2i) < 2m. So, the complexity of generating

the first m subsets is actually O(m), a tighter bound than obtained using the worst-case
method.

The amortized complexity of nextSubset is (sum of actual costs)/m < 2m/m = O(1).

Accounting Method

We first guess the amortized complexity of nextSubset, and then show that this amor-
tized complexity satisfies Equation 1.11. Suppose we guess that the amortized complexity
is 2. To verify this guess, we must show that P (m) − P (0) ≥ 0 for all m.

We shall use the alternative proof method used in the McWidget example. In this method,
we distribute the excess charge P (i) − P (0) over various accounting entities, and use these

© 2005 by Chapman & Hall/CRC



1-22 Handbook of Data Structures and Applications

stored excess charges to establish P (i + 1) − P (0) ≥ 0. We use the x[j]s as the accounting
entities. Initially, each x[j] is 0 and has a credit of 0. When the first subset is generated, 1
unit of the amortized cost is used to pay for the single x[j] that changes and the remaining 1
unit of the amortized cost is retained as a credit by x[n], which is the x[j] that has changed
to 1. When the second subset is generated, the credit on x[n] is used to pay for changing
x[n] to 0 in the while loop, 1 unit of the amortized cost is used to pay for changing x[n−1] to
1, and the remaining 1 unit of the amortized cost is retained as a credit by x[n−1], which is
the x[j] that has changed to 1. When the third subset is generated, 1 unit of the amortized
cost is used to pay for changing x[n] to 1, and the remaining 1 unit of the amortized cost
is retained as a credit by x[n], which is the x[j] that has changed to 1. When the fourth
subset is generated, the credit on x[n] is used to pay for changing x[n] to 0 in the while
loop, the credit on x[n−1] is used to pay for changing x[n−1] to 0 in the while loop, 1 unit
of the amortized cost is used to pay for changing x[n− 2] to 1, and the remaining 1 unit of
the amortized cost is retained as a credit by x[n− 2], which is the x[j] that has changed to
1. Continuing in this way, we see that each x[j] that is 1 has a credit of 1 unit on it. This
credit is used to pay the actual cost of changing this x[j] from 1 to 0 in the while loop. One
unit of the amortized cost of nextSubset is used to pay for the actual cost of changing an
x[j] to 1 in the else clause, and the remaining one unit of the amortized cost is retained as
a credit by this x[j].

The above accounting scheme ensures that the credit on each x[j] that is 1 is exactly 1,
and the credit on each x[j] that is 0 is 0.

From the preceding discussion, it follows that P (m) − P (0) equals the number of x[j]s
that are 1. Since this number is always nonnegative, Equation 1.11 holds for all m.

Having established that the amortized complexity of nextSubset is 2 = O(1), we conclude
that the complexity of generating the first m subsets equals m ∗ amortized complexity =
O(m).

Potential Method

We first postulate a potential function that satisfies Equation 1.11, and then use this
function to obtain the amortized costs. Let P (j) be the potential just after the jth subset
is generated. From the proof used above for the accounting method, we can see that we
should define P (j) to be equal to the number of x[i]s in the jth subset that are equal to 1.

By definition, the 0th subset has all x[i] equal to 0. Since P (0) = 0 and P (j) ≥ 0 for
all j, this potential function P satisfies Equation 1.11. Consider any subset x[1 : n]. Let
q be the number of 1s at the right end of x[] (i.e., x[n], x[n − 1], · · · , x[n − q + 1], are all
1s). Assume that there is a next subset. When the next subset is generated, the potential
change is 1− q because q 1s are replaced by 0 in the while loop and a 0 is replaced by a 1 in
the else clause. The actual cost of generating the next subset is q + 1. From Equation 1.10,
it follows that, when there is a next subset, the amortized cost for nextSubset is

actual cost + potential change = q + 1 + 1 − q = 2

When there is no next subset, the potential change is −q and the actual cost of nextSubset
is q. From Equation 1.10, it follows that, when there is no next subset, the amortized cost
for nextSubset is

actual cost + potential change = q − q = 0

Therefore, we can use 2 as the amortized complexity of nextSubset. Consequently, the
actual cost of generating the first m subsets is O(m).
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1.8 Practical Complexities

We have seen that the time complexity of a program is generally some function of the
problem size. This function is very useful in determining how the time requirements vary
as the problem size changes. For example, the run time of an algorithm whose complexity
is Θ(n2) is expected to increase by a factor of 4 when the problem size doubles and by a
factor of 9 when the problem size triples.

The complexity function also may be used to compare two algorithms P and Q that
perform the same task. Assume that algorithm P has complexity Θ(n) and that algorithm
Q has complexity Θ(n2). We can assert that algorithm P is faster than algorithm Q for
“sufficiently large” n. To see the validity of this assertion, observe that the actual computing
time of P is bounded from above by cn for some constant c and for all n, n ≥ n1, while
that of Q is bounded from below by dn2 for some constant d and all n, n ≥ n2. Since cn ≤
dn2 for n ≥ c/d, algorithm P is faster than algorithm Q whenever n ≥ max{n1, n2, c/d}.

One should always be cautiously aware of the presence of the phrase sufficiently large
in the assertion of the preceding discussion. When deciding which of the two algorithms
to use, we must know whether the n we are dealing with is, in fact, sufficiently large. If
algorithm P actually runs in 106n milliseconds while algorithm Q runs in n2 milliseconds
and if we always have n ≤ 106, then algorithm Q is the one to use.

To get a feel for how the various functions grow with n, you should study Figures 1.11
These figures show that 2n grows very rapidly with n. In fact, if a

algorithm needs 2n steps for execution, then when n = 40, the number of steps needed is
approximately 1.1 ∗ 1012. On a computer performing 1,000,000,000 steps per second, this
algorithm would require about 18.3 minutes. If n = 50, the same algorithm would run for
about 13 days on this computer. When n = 60, about 310.56 years will be required to
execute the algorithm, and when n = 100, about 4 ∗ 1013 years will be needed. We can
conclude that the utility of algorithms with exponential complexity is limited to small n
(typically n ≤ 40).

log n n n log n n2 n3 2n

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 32 160 1024 32,768 4,294,967,296

FIGURE 1.11: Value of various functions.

Algorithms that have a complexity that is a high-degree polynomial are also of limited
utility. For example, if an algorithm needs n10 steps, then our 1,000,000,000 steps per
second computer needs 10 seconds when n = 10; 3171 years when n = 100; and 3.17 ∗ 1013

years when n = 1000. If the algorithm’s complexity had been n3 steps instead, then the
computer would need 1 second when n = 1000, 110.67 minutes when n = 10,000, and 11.57
days when n = 100,000.

to execute an algorithm of complexity f(n) instructions. One should note that currently
only the fastest computers can execute about 1,000,000,000 instructions per second. From a
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and 1.12 very closely.
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FIGURE 1.12: Plot of various functions.

practical standpoint, it is evident that for reasonably large n (say n > 100) only algorithms
of small complexity (such as n, n log n, n2, and n3) are feasible. Further, this is the case
even if we could build a computer capable of executing 1012 instructions per second. In this
case the computing times of Figure 1.13 would decrease by a factor of 1000. Now when n
= 100, it would take 3.17 years to execute n10 instructions and 4 ∗ 1010 years to execute 2n

instructions.

f(n)
n n n log2 n n2 n3 n4 n10 2n

10 .01 µs .03 µs .1 µs 1 µs 10 µs 10 s 1 µs
20 .02 µs .09 µs .4 µs 8 µs 160 µs 2.84 h 1 ms
30 .03 µs .15 µs .9 µs 27 µs 810 µs 6.83 d 1 s
40 .04 µs .21 µs 1.6 µs 64 µs 2.56 ms 121 d 18 m
50 .05 µs .28 µs 2.5 µs 125 µs 6.25 ms 3.1 y 13 d

100 .10 µs .66 µs 10 µs 1 ms 100 ms 3171 y 4 ∗ 1013 y
103 1 µs 9.96 µs 1 ms 1 s 16.67 m 3.17 ∗ 1013 y 32 ∗ 10283 y
104 10 µs 130 µs 100 ms 16.67 m 115.7 d 3.17 ∗ 1023 y
105 100 µs 1.66 ms 10 s 11.57 d 3171 y 3.17 ∗ 1033 y
106 1 ms 19.92 ms 16.67 m 31.71 y 3.17 ∗ 107 y 3.17 ∗ 1043 y

µs = microsecond = 10−6 seconds; ms = milliseconds = 10−3 seconds
s = seconds; m = minutes; h = hours; d = days; y = years

FIGURE 1.13: Run times on a 1,000,000,000 instructions per second computer.
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