
12
Splay Trees

Sanjeev Saxena
Indian Institute of Technology, Kanpur

12.1 Introduction . 12-1
12.2 Splay Trees . 12-2
12.3 Analysis. 12-4

Access and Update Operations
12.4 Optimality of Splay Trees . 12-7

Static Optimality • Static Finger Theorem • Working
Set Theorem • Other Properties and Conjectures

12.5 Linking and Cutting Trees . 12-10
Data Structure • Solid Trees • Rotation • Splicing •

Splay in Virtual Tree • Analysis of Splay in Virtual
Tree • Implementation of Primitives for Linking and
Cutting Trees

12.6 Case Study: Application to Network Flows 12-16
12.7 Implementation Without Linking and Cutting

Trees . 12-19
12.8 FIFO: Dynamic Tree Implementation 12-20
12.9 Variants of Splay Trees and Top-Down Splaying12-23

12.1 Introduction

In this chapter we discuss following topics:

1. Introduction to splay trees and their applications
2. Splay Trees–description, analysis, algorithms and optimality of splay trees.
3. Linking and Cutting Trees
4. Case Study: Application to Network Flows
5. Variants of Splay Trees.

which support operations like insert, delete (including deleting the minimum item), search
(or membership) in O(log n) time (for each operation). Splay trees, introduced by Sleator
and Tarjan [13, 15] support all these operations in O(log n) amortized time, which roughly
means that starting from an empty tree, a sequence of m of these operations will take
O(m log n) time (deterministic), an individual operation may take either more time or less

Assume that we are searching for an item in a “large” sorted file, and if the item is in
the kth position, then we can search the item in O(log k) time by exponential and binary

f from a finger in O(log f) time. Splay trees can search (again in amortized sense) an item

12-1

© 2005 by Chapman & Hall/CRC

time (see Theorem 12.1). We discuss some applications in the rest of this section.

There are various data structures like AVL-trees, red-black trees, 2-3-trees (Chapter 10)

search. Similarly, finger search trees (Chapter 11) can be used to search any item at distance

DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

12-2 Handbook of Data Structures and Applications

from any finger (which need not even be specified) in O(log f) time, where f is the distance

taken will be minimum over all possible fingers (time, again in amortized sense).
If we know the frequency or probability of access of each item, then we can construct

be the smallest for optimal binary search trees. If we do not know the probability (or
access frequency), and if we use splay trees, even then the total time taken for all accesses
will still be the same as that for a binary search tree, up to a multiplicative constant (see

In addition, splay trees can be used almost as a “black box” in linking and cutting trees

all ancestors of a node x.
Moreover, in practice, the re-balancing operations (rotations) are very much simpler

than those in height balanced trees. Hence, in practice, we can also use splay trees as an
alternative to height balanced trees (like AVL-trees, red-black trees, 2-3-trees), if we are
interested only in the total time. However, some experimental studies [3] suggest, that for
random data, splay trees outperform balanced binary trees only for highly skewed data; and
for applications like “vocabulary accumulation” of English text [16], even standard binary
search trees, which do not have good worst case performance, outperform both balanced
binary trees (AVL trees) and splay trees. In any case, the constant factor and the algorithms
are not simpler than those for the usual heap, hence it will not be practical to use splay trees
for sorting (say as in heap sort), even though the resulting algorithm will take O(n log n)
time for sorting, unless the data has some degree of pre-sortedness, in which case splay sort
is a practical alternative [10]. Splay trees however, can not be used in real time applications.

Splay trees can also be used for data compression. As splay trees are binary search trees,
they can be used directly [4] with guaranteed worst case performance. They are also used
in data compression with some modifications [9]. Routines for data compression can be
shown to run in time proportional to the entropy of input sequence [7] for usual splay trees
and their variants.

12.2 Splay Trees

Let us assume that for each node x, we store a real number key(x).
In any binary search tree left subtree of any node x contains items having “key” values

less than the value of key(x) and right subtree of the node x contains items with “key”
values larger than the value of key(x).

In splay trees, we first search the query item, say x as in the usual binary search trees—
compare the query item with the value in the root, if smaller then recursively search in
the left subtree else if larger then, recursively search in the right subtree, and if it is equal
then we are done. Then, informally speaking, we look at every disjoint pair of consecutive
ancestors of x, say y =parent(x) and z =parent(y), and perform certain pair of rotations.
As a result of these rotations, x comes in place of z.

In case x has an odd number of proper ancestors, then the ancestor of x (which is child
of the root), will also have to be dealt separately, in terminal case— we rotate the edge

If x and y are both left or are both right children of their respective parents, then we first
rotate the edge between y and its parent z and then the edge between x and its parent y.

If x is a left (respectively right) child and y is a right (respectively left) child, then we

© 2005 by Chapman & Hall/CRC

from the finger (see Section 12.4.2). Since the finger is not required to be specified, the time

Section 12.4.1).

(see Section 12.5). Here we need the ability to add (or subtract) a number to key values of

between x and the root. This step is called zig step (see Figure 12.1).

This step is called zig-zig step (see Figure 12.2).

an optimum binary search tree (Chapter 14) for these items; total time for all access will

Splay Trees 12-3

y

x

x

y γ

βαγβ

α

FIGURE 12.1: parent(x) is the root— edge xy is rotated (Zig case).

α

β

γ δ

x

y

z

α β γ δ

xz

y

α β

γz

y δ

x

FIGURE 12.2: x and parent(x) are both right children (Zig-Zig case) —first edge yz is
rotated then edge xy.

α

β γ

x

y δ

z

α β

y γ

x

z

δ

α β

y

x

z

γ δ

FIGURE 12.3: x is a right child while parent(x) is a left child (Zig-Zag case)— first edge
xy is rotated then edge xz.

first rotate the edge between x and y and then between x and z, this step is called zig-zag

These rotations (together) not only make x the new root, but also, roughly speaking
halve the depth (length of path to root) of all ancestors of x in the tree. If the node x is at
depth “d”, splay(x) will take O(d) time, i.e., time proportional to access the item in node
x.

Formally, splay(x) is a sequence of rotations which are performed (as follows) until x
becomes a root:

• If x and parent(x) are both left (or are both right) children of their parents, then
we first rotate at y =parent(x) (i.e., the edge between y and its parent) and then

• If x is left (or respectively right) child but parent(x) is right (respectively left)
child of its parent, then first rotate at x and then again rotate at x, see Fig-
ure 12.3.

© 2005 by Chapman & Hall/CRC

• If parent(x) is root, then we carry out usual rotation, see Figure 12.1.

step (see Figure 12.3).

rotate at x, see Figure 12.2.

12-4 Handbook of Data Structures and Applications

12.3 Analysis

We will next like to look at the “amortized” time taken by splay operations. Amortized
time is the average time taken over a worst case sequence of operations.

For the purpose of analysis, we give a positive weight w(x) to (any) item x in the tree.
The weight function can be chosen completely arbitrarily (as long it is strictly positive).
For analysis of splay trees we need some definitions (or nomenclature) and have to fix some
parameters.

Weight of item x: For each item x, an arbitrary positive weight w(x) is associated

Size of node x: Size(x) is the sum of the individual weights of all items in the sub-
tree rooted at the node x.

Rank of node x: Rank of a node x is log2(size(x)).
Potential of a tree: Let α be some positive constant (we will discuss choice of α

later), then the potential of a tree T is taken to be
α(Sum of rank(x) for all nodes x ∈ T) = α

∑
x∈T rank(x).

Amortized Time: As always,
Amortized time = Actual Time + New Potential − Old Potential.

Running Time of Splaying: Let β be some positive constant, choice of β is also
discussed later but β ≤ α, then the running time for splaying is
β×Number of rotations.
If there are no rotations, then we charge one unit for splaying.

We also need a simple result from algebra. Observe that 4xy = (x + y)2 − (x− y)2. Now
if x + y ≤ 1, then 4xy ≤ 1 − (x − y)2 ≤ 1 or taking logarithms1, log x + log y ≤ −2. Note
that the maximum value occurs when x = y = 1

2 .

FACT 12.1 [Result from Algebra] If x + y ≤ 1 then log x + log y ≤ −2. The maximum
value occurs when x = y = 1

2 .

LEMMA 12.1 [Access Lemma] The amortized time to splay a tree (with root “t”) at a
node “x” is at most

3α(rank(t) − rank(x)) + β = O

(
log

(
Size(t)
Size(x)

))

Proof We will calculate the change in potential, and hence the amortized time taken in
each of the three cases.

Let s() denote the sizes before rotation(s) and s′() be the sizes after rotation(s). Let
r() denote the ranks before rotation(s) and r′() be the ranks after rotation(s).

Case 1– x and parent(x) are both left (or both right) children

1All logarithms in this chapter are to base two.

© 2005 by Chapman & Hall/CRC

(see Section 12.4 for some examples of function w(x)).

Splay Trees 12-5

′ ′ s(x)
s′(x) + s′(z)

s′(x) ≤ 1. Thus,
by Fact 12.1,

−2 ≥ log
s(x)
s′(x)

+ log
s′(z)
s′(x)

= r(x) + r′(z) − 2r′(x),

or
r′(z) ≤ 2r′(x) − r(x) − 2.

Observe that two rotations are performed and only the ranks of x, y and z are
changed. Further, as r′(x) = r(z), the Amortized Time is
= 2β + α((r′(x) + r′(y) + r′(z)) − (r(x) + r(y) + r(z)))
= 2β + α((r′(y) + r′(z)) − (r(x) + r(y)))
≤ 2β + α((r′(y) + r′(z)) − 2r(x)), (as r(y) ≥ r(x)).
As r′(x) ≥ r′(y), amortized time
≤ 2β + α((r′(x) + r′(z)) − 2r(x))
≤ 2β + α((r′(x) + {2r′(x) − r(x) − 2} − 2r(x)))
≤ 3α(r′(x) − r(x)) − 2α + 2β
≤ 3α(r′(x) − r(x)) (as α ≥ β).

Case 2– x is a left child, parent(x) is a right child
′ ′ ′ s′(y)

s′(x) + s′(z)
s′(x) ≤ 1. Thus, by

Fact 12.1,
−2 ≥ log s′(y)

s′(x) + log s′(z)
s′(x) = r′(y) + r′(z) − 2r′(x), or,

r′(y) + r′(z) ≤ 2r′(x) − 2.
Now Amortized Time= 2β +α((r′(x)+ r′(y)+ r′(z))− (r(x)+ r(y)+ r(z))). But,
as r′(x) = r(z), Amortized time = 2β + α((r′(y) + r′(z))− (r(x) + r(y))). Using
r(y) ≥ r(x), Amortized time
≤ 2β + α((r′(y) + r′(z)) − 2r(x))
≤ 2α(r′(x) − r(x)) − 2α + 2β
≤ 3α(r′(x) − r(x)) − 2(α − β) ≤ 3α(r′(x) − r(x))

Case 3– parent(x) is a root

= β + α((r′(x) + r′(y)) − (r(x) + r(y))).
But as, r′(x) = r(y), Amortized time is
β + α(r′(y) − r(x))
≤ β + α(r′(x) − r(x))
≤ β + 3α(r′(x) − r(x)).
As case 3, occurs only once, and other terms vanish by telescopic cancellation,
the lemma follows.

THEOREM 12.1 Time for m accesses on a tree having at most n nodes is O
(
(m +

n) log n
)

Proof Let the weight of each node x be fixed as 1/n. As there are n nodes in the entire
tree, the total weight of all nodes in the tree is 1.

If t is the root of the tree then, size(t) = 1 and as each node x has at least one node (x
itself) present in the subtree rooted at x (when x is a leaf, exactly one node will be present),
for any node x, size(x) ≥ (1/n). Thus, we have following bounds for the ranks— r(t) ≤ 0
and r(x) ≥ − logn.

© 2005 by Chapman & Hall/CRC

Please refer to Figure 12.2. Here, s(x)+ s (z) ≤ s (x), or

Please refer to Figure 12.1. There is only one rotation, Amortized Time

Please refer to Figure 12.3. s (y) + s (z) ≤ s (x), or

12-6 Handbook of Data Structures and Applications

Or, from Lemma 12.1, amortized time per splay is at most 1 + 3 logn. As maximum
possible value of the potential is n logn, maximum possible potential drop is also O(n log n),
the theorem follows.

We will generalize the result of Theorem 12.1 in Section 12.4, where we will be choosing
some other weight functions, to discuss other optimality properties of Splay trees.

12.3.1 Access and Update Operations

We are interested in performing following operations:

1. Access(x)— x is a key value which is to be searched.
2. Insert(x)— a node with key value x is to be inserted, if a node with this key

value is not already present.
3. Delete(x)— node containing key value x is to be deleted.
4. Join(t1, t2)— t1 and t2 are two trees. We assume that all items in tree t1 have

smaller key values than the key value of any item in the tree t2. The two trees
are to be combined or joined into a single tree as a result, the original trees t1
and t2 get “destroyed”.

5. Split(x, t)— the tree t is split into two trees (say) t1 and t2 (the original tree
is “lost”). The tree t1 should contain all nodes having key values less than (or
equal to) x and tree t2 should contain all nodes having key values strictly larger
than x.

We next discuss implementation of these operations, using a single primitive operation—
splay. We will show that each of these operations, for splay trees can be implemented using
O(1) time and with one or two “splay” operations.

Access(x, t) Search the tree t for key value x, using the routines for searching in a
“binary search tree” and splay at the last node— the node containing value x,
in case the search is successful, or the parent of “failure” node in case the search
is unsuccessful.

Join(t1, t2) Here we assume that all items in splay tree t1 have key values which are
smaller than key values of items in splay tree t2, and we are required to combine
these two splay trees into a single splay tree.
Access largest item in t1, formally, by searching for “+∞”, i.e., a call to
Access(+∞, t1). As a result the node containing the largest item (say r) will
become the root of the tree t1. Clearly, now the root r of the splay tree t1 will
not have any right child. Make the root of the splay tree t2 the right child of r,
the root of t1, as a result, t2 will become the right sub-tree of the root r and r
will be the root of the resulting tree.

Split(x, t) We are required to split the tree t into two trees, t1 containing all items
with key values less than (or equal to) x and t2, containing items with key values
greater than x.
If we carry out Access(x, t), and if a node with key value x is present, then the
node containing the value x will become the root. We then remove the link from
node containing the value x to its right child (say node containing value y); the
resulting tree with root, containing the value x, will be t1, and the tree with root,
containing the value y, will be the required tree t2.
And if the item with key value x is not present, then the search will end at a node

© 2005 by Chapman & Hall/CRC

Splay Trees 12-7

(say) containing key value z. Again, as a result of splay, the node with value z
will become the root. If z > x, then t1 will be the left subtree of the root and
the tree t2 will be obtained by removing the edge between the root and its left
child.
Otherwise, z < x, and t2 will be the right subtree of the root and t1 will be the
resulting tree obtained by removing the edge between the root and its right child.

Insert(x, t) We are required to insert a new node with key value x in a splay tree
t. We can implement insert by searching for x, the key value of the item to be
inserted in tree t using the usual routine for searching in a binary search tree.
If the item containing the value x is already present, then we splay at the node
containing x and return. Otherwise, assume that we reach a leaf (say) containing
key y, y �= x. Then if x < y, then add the new node containing value x as a left
child of node containing value y, and if x > y, then the new node containing the
value x is made the right child of the node containing the value y, in either case
we splay at the new node (containing the value x) and return.

Delete(x, t) We are required to delete the node containing the key value x from the
splay tree t. We first access the node containing the key value x in the tree t—
Access(x, t). If there is a node in the tree containing the key value x, then that
node becomes the root, otherwise, after the access the root will be containing a
value different from x and we return(−1)— value not found. If the root contains
value x, then let t1 be the left subtree and t2 be the right subtree of the root.
Clearly, all items in t1 will have key values less than x and all items in t2 will
have key values greater than x. We delete the links from roots of t1 and t2 to
their parents (the root of t, the node containing the value x). Then, we join these
two subtrees — Join(t1, t2) and return.

Observe that in both “Access” and “Insert”, after searching, a splay is carried out.
Clearly, the time for splay will dominate the time for searching. Moreover, except for
splay, everything else in “Insert” can be easily done in O(1) time. Hence the time taken for
“Access” and “Insert” will be of the same order as the time for a splay. Again, in “Join”,
“Split” and “Delete”, the time for “Access” will dominate, and everything else in these
operations can again be done in O(1) time, hence “Join”, “Split” and “Delete” can also be
implemented in same order of time as for an “Access” operation, which we just saw is, in
turn, of same order as the time for a splay. Thus, each of above operations will take same
order of time as for a splay. Hence, from Theorem 12.1, we have

THEOREM 12.2 Time for m update or access operations on a tree having at most n
nodes is O

(
(m + n) log n

)
.

Observe that, at least in amortized sense, the time taken for first m operations on a tree
which never has more than n nodes is the same as the time taken for balanced binary search
trees like AVL trees, 2-3 trees, etc.

12.4 Optimality of Splay Trees

If w(i) the weight of node i is independent of the number of descendants of node i, then the
maximum value of size(i) will be W =

∑
w(i) and minimum value of size(i) will be w(i).

As size of the root t, will be W , and hence rank log W , so by Lemma 12.1, the amortized

© 2005 by Chapman & Hall/CRC

12-8 Handbook of Data Structures and Applications

time to splay at a node “x” will be O
(
log

(
Size(t)
Size(x)

))
= O

(
log

(
W

Size(x)

))
= O

(
log W

w(x)

)
.

Also observe that the maximum possible change in the rank (for just node i) will be
log W − log w(i) = log(W/w(i)) or the total maximum change in all ranks (the potential of
the tree, with α = 1) will be bounded by

∑
log(W/w(i)).

Note that, as
∑ w(i)

W = 1,
∑∣∣ log W

w(i)

∣∣ ≤ n log n (the maximum occurs when all
(w(i)

W

)
s

are equal to 1/n), hence maximum change in potential is always bounded by O(n log n).
As a special case, in Theorem 12.1, we had fixed w(i) = 1/n and as a result, the amortized

time per operation is bounded by O(log n), or time for m operations become O((m +
n) log n). We next fix w(i)’s in some other cases.

12.4.1 Static Optimality

On any sequence of accesses, a splay tree is as efficient as the optimum binary search tree,
up to a constant multiplicative factor. This can be very easily shown.

Let q(i) be the number of times the ith node is accessed, we assume that each item is
accessed at least once, or q(i) ≥ 1. Let m =

∑
q(i) be the total number of times we access

any item in the splay tree. Assign a weight of q(i)/m to item i. We call q(i)/m the access
frequency of the ith item. Observe that the total (or maximum) weight is 1 and hence the
rank of the root r(t) = 0.

Thus

r(t) − r(x) = 0 − r(x) = − log
(∑

i∈Tx

q(i)
m

)
≤ − log

(q(x)
m

)
.

Hence, from Lemma 12.1, with α = β = 1, the amortized time per splay (say at node
“x”) is at most
3α(r(t) − r(x)) + β
= 1 + 3(− log(q(x)/m))
= 1 + 3 log(m/q(x)).

As ith item is accessed q(i) times, amortized total time for all accesses of the ith item is
O

(
q(i) + q(i) log(m

q(i))
)
, hence total amortized time will be O

(
m +

∑
q(i) log(m

q(i))
)
. More-

over as the maximum value of potential of the tree is
∑

max{r(x)} ≤
∑

log(m
q(i)) =

O
(∑

log(m
q(i))

)
, the total time will be O

(
m +

∑
q(i) log(m

q(i))
)
.

THEOREM 12.3 Time for m update or access operations on an n-node tree is O
(
m +∑

q(i) log(m
q(i))

)
, where q(i) is the total number of times item i is accessed, here m =

∑
q(i).

REMARK 12.1 The total time, for this analysis is the same as that for the (static)
optimal binary search tree.

12.4.2 Static Finger Theorem

We first need a result from mathematics. Observe that, in the interval k − 1 ≤ x ≤ k,
1
x ≥ 1

k or 1
x2 ≥ 1

k2 . Hence, in this interval, we have, 1
k2 ≤

∫ k

k−1
dx
x2 summing from k = 2 to

n,
∑n

2
1
k2 ≤

∫ n

1
dx
x2 = 1 − 1

n or
∑n

k=1
1
k2 < 2.

If f is an integer between 0 and n, then we assign a weight of 1/(|i − f | + 1)2 to item i.
Then W ≤ 2

∑∞
k=1

1
k2 < 4 = O(1). Consider a particular access pattern (i.e. a snapshot

or history or a run). Let the sequence of accessed items be i1, · · · , im, some ij ’s may occur

© 2005 by Chapman & Hall/CRC

Splay Trees 12-9

more than once. Then, by the discussion at the beginning of this section, amortized time
for the jth access is O(log(|ij − f | + 1). Or the total amortized time for all access will be
O(m +

∑m
j=1 log(|ij − f |+ 1)). As weight of any item is at least 1/n2, the maximum value

of potential is n log n. Thus, total time is at most O(n log n + m +
∑m

j=1 log(|ij − f | + 1)).

REMARK 12.2 f can be chosen as any fixed item (finger). Thus, this out-performs
finger-search trees, if any fixed point is used as a finger; but here the finger need not be
specified.

12.4.3 Working Set Theorem

Splay trees also have the working set property, i.e., if only t different items are being
repeatedly accessed, then the time for access is actually O(log t) instead of O(log n). In
fact, if tj different items were accessed since the last access of ijth item, then the amortized
time for access of ijth item is only O(log(tj + 1)).

This time, we number the accesses from 1 to m in the order in which they occur. Assign
weights of 1, 1/4, 1/9, · · · , 1/n2 to items in the order of the first access. Item accessed
earliest gets the largest weight and those never accessed get the smallest weight. Total
weight W =

∑
(1/k2) < 2 = O(1).

It is useful to think of item having weight 1/k2 as being in the kth position in a (some
abstract) queue. After an item is accessed, we will be putting it in front of the queue, i.e.,
making its weight 1 and “pushing back” items which were originally ahead of it, i.e., the
weights of items having old weight 1/s2 (i.e., items in sth place in the queue) will have a
new weight of 1/(s + 1)2 (i.e., they are now in place s + 1 instead of place s). The position
in the queue, will actually be the position in the “move to front” heuristic.

Less informally, we will be changing the weights of items after each access. If the weight
of item ij during access j is 1/k2, then after access j, assign a weight 1 to item ij . And an
item having weight 1/s2, s < k gets weight changed to 1/(s + 1)2.

Effectively, item ij has been placed at the head of queue (weight becomes 1/12); and
weights have been permuted. The value of W , the sum of all weights remains unchanged.

If tj items were accessed after last access of item ij , then the weight of item ij would
have been 1/t2j , or the amortized time for jth access is O(log(tj + 1)).

After the access, as a result of splay, the ijth item becomes the root, thus the new size of
ijth item is the sum of all weights W— this remains unchanged even after changing weights.
As weights of all other items, either remain the same or decrease (from 1/s2 to 1/(s + 1)2),
size of all other items also decreases or remains unchanged due to permutation of weights.
In other words, as a result of weight reassignment, size of non-root nodes can decrease
and size of the root remains unchanged. Thus, weight reassignment can only decrease the
potential, or amortized time for weight reassignment is either zero or negative.

Hence, by discussions at the beginning of this section, total time for m accesses on a tree
of size at most n is O(n log n+

∑
log(tj +1)) where tj is the number of different items which

were accessed since the last access of ijth item (or from start, if this is the first access).

12.4.4 Other Properties and Conjectures

Splay trees are conjectured [13] to obey “Dynamic Optimality Conjecture” which roughly
states that cost for any access pattern for splay trees is of the same order as that of the best
possible algorithm. Thus, in amortized sense, the splay trees are the best possible dynamic
binary search trees up to a constant multiplicative factor. This conjecture is still open.

© 2005 by Chapman & Hall/CRC

12-10 Handbook of Data Structures and Applications

However, dynamic finger conjecture for splay trees which says that access which are close
to previous access are fast has been proved by Cole[5]. Dynamic finger theorem states that
the amortized cost of an access at a distance d from the preceding access is O(log(d + 1));
there is however O(n) initialization cost. The accesses include searches, insertions and
deletions (but the algorithm for deletions is different)[5].

12.5 Linking and Cutting Trees

Tarjan [15] and Sleator and Tarjan [13] have shown that splay trees can be used to implement
linking and cutting trees.

We are given a collection of rooted trees. Each node will store a value, which can be any
real number. These trees can “grow” by combining with another tree link and can shrink by
losing an edge cut. Less informally, the trees are “dynamic” and grow or shrink by following
operations (we assume that we are dealing with a forest of rooted trees).

link If x is root of a tree, and y is any node, not in the tree rooted at x, then make y
the parent of x.

cut Cut or remove the edge between a non-root node x and its parent.

Let us assume that we want to perform operations like

• Add (or subtract) a value to all ancestors of a node.
• Find the minimum value stored at ancestors of a query node x.

More formally, following operations are to be supported:

find cost(v): return the value stored in the node v.
find root(v): return the root of the tree containing the node v.
find min(v): return the node having the minimum value, on the path from v till

find root(v), the root of the tree containing v. In case of ties, choose the node
closest to the root.

add cost(v, δ): Add a real number δ to the value stored in every node on the path
from v to the root (i.e., till find root(v)).

find size(v) find the number of nodes in the tree containing the node v.
link(v, w) Here v is a root of a tree. Make the tree rooted at v a child of node w. This

operation does nothing if both vertices v and w are in the same tree, or v is not
a root.

cut(v) Delete the edge from node v to its parent, thus making v a root. This operation
does nothing if v is a root.

12.5.1 Data Structure

For the given forest, we make some of the given edges “dashed” and the rest of them are
kept solid. Each non-leaf node will have only one “solid” edge to one of its children. All
other children will be connected by a dashed edge. To be more concrete, in any given tree,
the right-most link (to its child) is kept solid, and all other links to its other children are
made “dashed”.

As a result, the tree will be decomposed into a collection of solid paths. The roots of solid
paths will be connected to some other solid path by a dashed edge. A new data structure

© 2005 by Chapman & Hall/CRC

Splay trees also obey several other optimality properties (see e.g. [8]).

Splay Trees 12-11

H

J

I

C1

C2

C3

C4

A7

A6

G

A5

A4

A3

A2

A1

B1

EB2

B3

B4

B5F

D A7 G

A6

A4

A2

A5 A3 I A1

H
C2 B3

J

C3 C1 B5 B2

B4 B1C4

F D E

(a) (b)

FIGURE 12.4: (a) Original Tree (b) Virtual Trees: Solid and dashed children.

called a “virtual tree” is constructed. Each linking and cutting tree T is represented by a
virtual tree V , containing the same set of nodes. But each solid path of the original tree is
modified or converted into a binary tree in the virtual tree; binary trees are as balanced as
possible. Thus, a virtual tree has a (solid) left child, a (solid) right child and zero or more
(dashed) middle children.

In other words, a virtual tree consists of a hierarchy of solid binary trees connected by
dashed edges. Each node has a pointer to its parent, and to its left and right children (see

12.5.2 Solid Trees

Recall that each path is converted into a binary tree. Parent (say y) of a node (say x)
in the path is the in-order (symmetric order) successor of that node (x) in the solid tree.
However, if x is the last node (in symmetric order) in the solid sub-tree then its parent path
will be the parent of the root of the solid sub-tree containing it (see Figure 12.4). Formally,
Parentpath(v) =Node(Inorder(v) + 1).

Note that for any node v, all nodes in the left sub-tree will have smaller inorder numbers
and those in the right sub-tree will have larger inorder numbers. This ensures that all nodes
in the left subtree are descendants and all nodes in the right sub-tree are ancestors. Thus,
the parent (in the binary tree) of a left child will be an ancestor (in the original tree). But,
parent (in the binary tree) of a right child is a descendant (in the original tree). This order,
helps us to carry out add cost effectively.

We need some definitions or notation to proceed.
Let mincost(x) be the cost of the node having the minimum key value among all descen-

dants of x in the same solid sub-tree. Then in each node we store two fields δcost(x) and
δmin(x). We define,
δmin(x) =cost(x)−mincost(x). And,

© 2005 by Chapman & Hall/CRC

Figure 12.4).

12-12 Handbook of Data Structures and Applications

dashed children of w dashed children of v

dashed children of v dashed children of w

w

v

ba

c

w

v

b c

a

FIGURE 12.5: Rotation in Solid Trees— rotation of edge (v, w).

δcost(x) =
{

cost(x) − cost(parent(x)) if x has a solid parent
cost(x) otherwise (x is a solid tree root)

We will also store, size(x), the number of descendants (both solid and dashed) in virtual
tree in incremental manner.

δsize(x) =
{

size(parent(x)) − size(x) if x is not the root of a virtual tree
size(x) otherwise

Thus, δsize(x) is number of descendants of parent(x), not counting the descendants of x.

FACT 12.2 δmin(x) − δcost(x) =cost(parent(x))- mincost(x).

Thus, if u and v are solid children of node z, then
mincost(z) = min{cost(z),mincost(v),mincost(w)}, or,
δmin(z) =cost(z)−mincost(z) = max{0,cost(z)−mincost(v),cost(z)−mincost(w).}

Using Fact 12.2, and the fact z =parent(u) =parent(v), we have

FACT 12.3 If u and v are children of z, then
δmin(z) = max{0, δmin(u) − δcost(u), δmin(v) − δcost(v)}.

For linking and cutting trees, we need two primitive operations— rotation and splicing.

12.5.3 Rotation

will make w = p(v) a child of v. Rotation does not have any effect on the middle children.
Let a be the left solid child of w and v be the right solid child of w.

Let “non-primes” denote the values before the rotation and “primes” the values after the
rotation of the solid edge (v, w). We next show that the new values δcost′, δmin′ and δsize′,
can be calculated in terms of old known values.

We assume that b is the left solid child of v and c is the right solid child of v.
First we calculate the new δcost′ values in terms of old δcost values. From Figure 12.5,

δcost′(v) =cost(v)−cost(parent′(v))
=cost(v)−cost(parent(w))
=cost(v)−cost(w)+cost(w)−cost(parent(w))
= δcost(v) + δcost(w).

© 2005 by Chapman & Hall/CRC

Let w be the parent of v in the solid tree, then rotation of the solid edge (v, p(v)) ≡ (v, w)
Let us discuss rotation first (see Figure 12.5).

Splay Trees 12-13

δcost′(w) =cost(w)−cost(v)
= −δcost′(v).

δcost′(b) =cost(b)−cost(w)
=cost(b)-cost(v)+cost(v)−cost(w)
= δcost(b) + δcost(v).

Finally,
δcost′(a) = δcost(a) and δcost′(c) = δcost(c).

We next compute δmin′ values in terms of δmin and δcost.
δmin′(v) =cost(v)−mincost′(v)
=cost(v)−mincost(w)
=cost(v)−cost(w)+cost(w)−mincost(w)
= δcost(v) + δmin(w).

δmin() of all nodes other than w will remain same, and for w, from Fact 12.3, we have,
δmin′(w) = max{0, δmin′(a) − δcost′(a), δmin′(b) − δcost′(b)}
= max{0, δmin(a) − δcost(a), δmin(b) − δcost(b) − δcost(v)}

We finally compute δsize′ in terms of δsize.
δsize′(w) =size′(parent′(w))−size′(w)

′ ′

=size(v)−size(b) (see Figure 12.5)
=δsize(b).

If z is parent(w), then size(z) is unchanged.
δsize′(v) =size′(parent(v))-size′(v)
=size(z)−size′(v)
=size(z)−size(w) as size′(v) =size(w)
=δsize(w).

For all other nodes (except v and w), the number of descendants remains the same, hence,
size′(x) =size(x). Hence, for all x /∈ {v, w},
size′(x) =size(x) or
size(parent(x))−δsize(x) =size′(parent′(x))−δsize′(x) or
δsize′(x) = −size(parent(x))+δsize(x)+size′(parent′(x)).

Observe that for any child x of v or w, size of parent changes. In particular,
δsize′(a) = −size(w) + δsize(a)+size′(w)
= −size′(v) + δsize(a)+size′(w)
= −δsize′(w) + δsize(a) = δsize(a) − δsize′(w)
= δsize(a) − δsize(b)

δsize′(c) = −size(v) + δsize(c)+size′(v)
=size(w)−size(v) + δsize(c) as size′(v) =size(w)
= δsize(v) + δsize(c).

And finally,
δsize′(b) = −size(v) + δsize(b)+size′(w)
=size(w)−size(v) + δsize(b)+size′(w)−size(w)
=δsize(v) + δsize(b)+size′(w)−size′(v)
=δsize(v) + δsize(b) − δsize′(w)
=δsize(v).

© 2005 by Chapman & Hall/CRC

=size (v)−size (w) (see Figure 12.5)

12-14 Handbook of Data Structures and Applications

12.5.4 Splicing

Let us next look at the other operation, splicing. Let w be the root of a solid tree. And let
v be a child of w connected by a dashed edge. If u is the left most child of w, then splicing
at a dashed child v, of a solid root w, makes v the left child of w. Moreover the previous
left-child u, now becomes a dashed child of w. Thus, informally speaking splicing makes a
node the leftmost child of its parent (if the parent is root) and makes the previous leftmost
child of parent as dashed.

We next analyse the changes in “cost” and “size” of various nodes after splicing at a
dashed child v of solid root w (whose leftmost child is u). As before, “non-primes” denote
the values before the splice and “primes” the values after the splice.

As v was a dashed child of its parent, it was a root earlier (in some solid tree). And as
w is also a root,
δcost′(v) =cost(v)−cost(w)
= δcost(v) − δcost(w).
And as u is now the root of a solid tree,
δcost′(u) =cost(u)
= δcost(u)+cost(w)
= δcost(u) + δcost(w).
Finally, δmin′(w) = max{0, δmin(v) − δcost′(v), δmin(right(w))-δcost(right(w))}
All other values are clearly unaffected.

As no rotation is performed, δsize() also remains unchanged, for all nodes.

12.5.5 Splay in Virtual Tree

In virtual tree, some edges are solid and some are dashed. Usual splaying is carried out only
in the solid trees. To splay at a node x in the virtual tree, following method is used. The
algorithm looks at the tree three times, once in each pass, and modifies it. In first pass, by
splaying only in the solid trees, starting from the node x, the path from x to the root of the
overall tree, becomes dashed. This path is made solid by splicing. A final splay at node x
will now make x the root of the tree. Less informally, the algorithm is as follows:

Algorithm for Splay(x)

Pass 1 Walk up the virtual tree, but splaying is done only within solid sub-tree. At
the end of this pass, the path from x to root becomes dashed.

Pass 2 Walk up from node x, splicing at each proper ancestor of x. After this step,
the path from x to the root becomes solid. Moreover, the node x and all its
children in the original tree (the one before pass 1) now become left children.

Pass 3 Walk up from node x to the root, splaying in the normal fashion.

12.5.6 Analysis of Splay in Virtual Tree

Weight of each node in the tree is taken to be the same (say) 1. Size of a node is total number
of descendants— both solid and dashed. And the rank of a node as before is rank(x) =
log(size(x)). We choose α = 2, and hence the potential becomes, potential= 2

∑
x rank(x).

We still have to fix β. Let us analyze the complexity of each pass.

Pass 1 We fix β = 1. Thus, from Lemma 12.1, the amortized cost of single splaying
is at most 6(r(t) − r(x)) + 1. Hence, the total cost of all splays in this pass will
be

© 2005 by Chapman & Hall/CRC

Splay Trees 12-15

≤ 6(r(t1) − r(x)) + 1 + 6(r(t2) − r(p(t1)) + 1 + · · · + 6(r(tk) − r(p(tk−1))) + 1
≤ (6(r(t1) − r(x)) + +6(r(tk) − r(p(tk−1)))) + k.
Here, k is number of solid trees in path from x to root. Or the total cost
≤ k + (6(r(root) − r(x))) − 6(r(p(tk−1)) − r(tk−1) + · · · + r(p(t1)) − r(t1)))
Recall that the size includes those of virtual descendants, hence each term in the
bracket is non-negative. Or the total cost
≤ k + 6(r(root) − r(x))
Note that the depth of node x at end of the first pass will be k.

Pass 2 As no rotations are performed, actual time is zero. Moreover as there are
no rotations, there is no change in potential. Hence, amortized time is also
zero. Alternatively, time taken to traverse k-virtual edges can be accounted by
incorporating that in β in pass 3.

REMARK 12.3 This means, that in effect, this pass can be done together
with Pass 1.

Pass 3 In pass 1, k extra rotations are performed, (there is a +k factor), thus, we can
take this into account, by charging, 2 units for each of the k rotation in pass 3,
hence we set β = 2. Clearly, the number of rotations, is exactly “k”. Cost will
be 6 log n + 2. Thus, in effect we can now neglect the +k term of pass 1.

Thus, total cost for all three passes is 12 logn + 2.

12.5.7 Implementation of Primitives for Linking and Cutting Trees

We next show that various primitives for linking and cutting trees described in the beginning
of this section can be implemented in terms of one or two calls to a single basic operation—
“splay”. We will discuss implementation of each primitive, one by one.

find cost(v) We are required to find the value stored in the node v. If we splay at
node v, then node v becomes the root, and δcost(v) will give the required value.
Thus, the implementation is

splay(v) and return the value at node v

find root(v) We have to find the root of the tree containing the node v. Again, if we
splay at v, then v will become the tree root. The ancestors of v will be in the right
subtree, hence we follow right pointers till root is reached. The implementation
is:

splay(v), follow right pointers till last node of solid tree, say w is
reached, splay(w) and return(w).

find min(v) We have to find the node having the minimum value, on the path from v
till the root of the tree containing v; in case of ties, we have to choose the node
closest to the root. We again splay at v to make v the root, but, this time, we
also keep track of the node having the minimum value. As these values are stored
in incremental manner, we have to compute the value by an “addition” at each
step.

splay(v), use δcost() and δmin() fields to walk down to the last mini-
mum cost node after v, in the solid tree, say w, splay(w) and return(w).

© 2005 by Chapman & Hall/CRC

12-16 Handbook of Data Structures and Applications

add cost(v, δx) We have to add a real number δx to the values stored in each and
every ancestors of node v. If we splay at node v, then v will become the root and
all ancestors of v will be in the right subtree. Thus, if we add δx to δcost(v),
then in effect, we are adding this value not only to all ancestors (in right subtree)
but also to the nodes in the left subtree. Hence, we subtract δx from δcost()
value of left child of v. Implementation is:

splay(v), add δx to δcost(v), subtract δx from δcost(LCHILD(v)) and
return

find size(v) We have to find the number of nodes in the tree containing the node v.
If we splay at the node v, then v will become the root and by definition of δsize,
δsize(v) will give the required number.

splay(v) and return(δsize(v)).

link(v, w) If v is a root of a tree, then we have to make the tree rooted at v a child of
node w.

Splay(w), and make v a middle (dashed) child of w. Update δsize(v)
and δsize(w), etc.

cut(v) If v, is not a root, then we have to delete the edge from node v to its parent,
thus making v a root. The implementation of this is also obvious:

splay(v), add δcost(v) to δcost(RCHILD(v)), and break link between
RCHILD(v) and v. Update δmin(v), δsize(v) etc.

12.6 Case Study: Application to Network Flows

We next discuss application of linking and cutting trees to the problem of finding maximum
flow in a network. Input is a directed graph G = (V, E). There are two distinguished
vertices s (source) and t (sink). We need a few definitions and some notations[1, 6]. Most
of the results in this case-study are from[1, 6].

PreFlow g(∗, ∗) is a real valued function having following properties:

Skew-Symmetry: g(u, v) = −g(v, u)

Capacity Constraint: g(u, v) ≤ c(u, v)

Positive-Flow Excess: e(v) ≡
∑n

w=1 g(v, w) ≥ 0 for v �= s

Flow-Excess Observe that flow-excess at node v is e(v) =
∑n

w=1 g(w, v) if v �= s and
flow excess at source s is e(s) = ∞

Flow f(∗, ∗) is a real valued function having following additional property

Flow Conservation:
∑n

w=1 f(v, w) = 0 for v /∈ {s, t}
Preflow: f is a preflow.

Value of flow: |f | =
∑n

w=1 f(s, w), the net flow out of source.

REMARK 12.4 If (u, v) /∈ E, then c(u, v) = c(v, u) = 0. Thus, f(u, v) ≤
c(u, v) = 0 and f(v, u) ≤ 0. By skew-symmetry, f(u, v) = 0

Cut Cut (S, S) is a partition of vertex set, such that s ∈ S and t ∈ S

© 2005 by Chapman & Hall/CRC

Splay Trees 12-17

s
t

Vertices
reachable
 from s

CUT

Vertices
which can
reach t

FIGURE 12.6: s − t Cut.

Capacity of Cut c(S, S) =
∑

v∈S,w∈S c(v, w)

Pre-Flow across a Cut g(S, S) =
∑

v∈S,w/∈S g(v, w)
Residual Capacity If g is a flow or preflow, then the residual capacity of an edge

(v, w) is rg(v, w) = c(v, w) − g(v, w).
Residual Graph Gg contains same set of vertices as the original graph G, but only

those edges for which residual capacity is positive; these are either the edges of
the original graph or their reverse edges.

Valid Labeling A valid labeling d() satisfies following properties:

1. d(t) = 0

2. d(v) > 0 if v �= t

3. if (v, w) is an edge in residual graph then d(w) ≥ d(v) − 1.

A trivial labeling is d(t) = 0 and d(v) = 1 if v �= t.

REMARK 12.5 As for each edge (v, w), d(v) ≤ d(w) + 1, dist(u, t) ≥ d(u).
Thus, label of every vertex from which t is reachable, is at most n − 1.

Active Vertex A vertex v �= s is said to be active if e(v) > 0.

The initial preflow is taken to be g(s, v) = c(s, v) and g(u, v) = 0 if u �= s.
Flow across a Cut Please refer to Figure 12.6. Observe that flow conservation is true

for all vertices except s and t. In particular sum of flow (total flow) into vertices in set
S − {s} (set shown between s and cut) is equal to |f | which must be the flow going out of
these vertices (into the cut). And this is the flow into vertices (from cut) in set S −{t} (set
after cut before t) which must be equal to the flow out of these vertices into t. Thus, the
flow into t is |f | which is also the flow through the cut.

FACT 12.4 As, |f | = f(S, S) =
∑

v∈S,w/∈S f(v, w) ≤
∑

v∈S,w/∈S c(v, w) = c(S, S)

Thus, maximum value of flow is less than minimum capacity of any cut.

THEOREM 12.4 [Max-Flow Min-Cut Theorem] max |f | = minimum cut

© 2005 by Chapman & Hall/CRC

12-18 Handbook of Data Structures and Applications

Proof Consider a flow f for which |f | is maximum. Delete all edges for which (f(u, v) ==
c(u, v)) to get the residual graph. Let S be the set of vertices reachable from s in the
residual graph. Now, t /∈ S, otherwise there is a path along which flow can be increased,
contradicting the assumption that flow is maximum. Let S be set of vertices not reachable
from s. S is not empty as t ∈ S. Thus, (S, S) is an s − t cut and as all edges (v, w) of cut
have been deleted, c(v, w) = f(v, w) for edges of cut.
|f | =

∑
v∈S,w/∈S f(v, w) =

∑
v∈S,w/∈S c(v, w) = c(S, S)

Push(v, w)

/* v is an active vertex and (v, w) an edge in residual graph with d(w) = d(v)−1
*/

Try to move excess from v to w, subject to capacity constraints, i.e., send
δ = min{e(v), rg(v, w)) units of flow from v to w.

/* g(v, w) = g(v, w) + δ; e(v) = e(v) − δ and e(w) = e(w) + δ; */

If δ = rg(v, w), then the push is said to be saturating.

Relabel(v)

For v �= s, the new distance label is

d(v) = min{d(w) + 1|(v, w) is a residual edge }

Preflow-Push Algorithms

Following are some of the properties of preflow-push algorithms:

1. If relabel v results in a new label, d(v) = d(w∗) + 1, then as initial labeling was
valid, dold(v) ≤ dold(w∗) + 1. Thus labels can only increase. Moreover, the new
labeling is clearly valid.

2. If push is saturating, edge (v, w) may get deleted from the graph and edge (w, v)
will get added to the residual graph, as d(w) = d(v) − 1, d(v) = d(w) + 1 ≥
d(w) − 1, thus even after addition to the residual graph, conditions for labeling
to be valid are satisfied.

3. As a result of initialization, each node adjacent to s gets a positive excess. More-
over all arcs out of s are saturated. In other words in residual graph there is no
path from s to t. As distances can not decrease, there can never be a path from
s to t. Thus, there will be no need to push flow again out of s.

4. By definition of pre-flow, flow coming into a node is more than flow going out.
This flow must come from source. Thus, all vertices with positive excess are
reachable from s (in the original network). Thus, as s is initially the only node,
at any stage of the algorithm, there is a path Pv to a vertex v (in the original
network) along which pre-flow has come from s to v. Thus, in the residual graph,
there is reverse path from v to s.

5. Consider a vertex v from which there is a path till a vertex X . As we trace back
this path from X , then distance label d() increases by at most one. Thus, d(v)
can be at most dist(v, X) larger than d(X). That is d(v) ≤ d(X)+ dist(v, X)

6. As for vertices from which t is not reachable, s is reachable, d(v) ≤ d(s)+ dist(s, v) =
n + (n − 1) = 2n − 1 (as d(s) = n).

© 2005 by Chapman & Hall/CRC

Splay Trees 12-19

Thus, maximum label of any node is 2n − 1.

FACT 12.5 As label of t remains zero, and label of other vertices only increase, the
number of Relabels, which result in change of labels is (n−1)2. In each relabel operation we
may have to look at degree(v) vertices. As, each vertex can be relabeled at most O(n) times,
time for relabels is

∑
O(n)×degree(v) = O(n) ×

∑
degree(v) = O(n) × O(m) = O(nm)

FACT 12.6 If a saturating push occurs from u to v, then d(u) = d(v) + 1 and edge (u, v)
gets deleted, but edge (v, u) gets added. Edge (u, v) can be added again only if edge (v, u)
gets saturated, i.e., dnow(v) = dnow(u)+ 1 ≥ d(u) +1 = d(v) + 2. Thus, the edge gets added
only if label increases by 2. Thus, for each edge, number of times saturating push can occur
is O(n). So the total number of saturating pushes is O(nm).

REMARK 12.6 Increase in label of d(u) can make a reverse flow along all arcs (x, u)
possible, and not just (v, u); in fact there are at most degree(u) such arcs. Thus, number
of saturating pushes are O(nm) and not O(n2).

FACT 12.7 Consider the point in time when the algorithm terminates, i.e., when pushes
or relabels can no longer be applied. As excess at s is ∞, excess at s could not have been
exhausted. The fact that push/relabels can not be applied means that there is no path from
s to t. Thus, Sg, the set of vertices from which t is reachable, and Sg, set of vertices from
which s is reachable, form an s − t cut.

Consider an edge (u, v) with u ∈ Sg and v ∈ Sg. As t is reachable from v, there is no
excess at v. Moreover, by definition of cut, the edge is not present in residual graph, or
in other words, flow in this edge is equal to capacity. By Theorem 12.4, the flow is the
maximum possible.

12.7 Implementation Without Linking and Cutting Trees

Each vertex will have a list of edges incident at it. It also has a pointer to current edge
(candidate for pushing flow out of that node). Each edge (u, v) will have three values
associated with it c(u, v), c(v, u) and g(u, v).

Push/Relabel(v)

Here we assume that v is an active vertex and (v, w) is current edge of v.

If (d(w) == d(v)−1)&& (rg(v, w) > 0) then send δ = min{e(v), rg(v, w)} units
of flow from v to w.

Else if v has no next edge, make first edge on edge list the current edge and
Relabel(v): d(v) = min{d(w) + 1|(v, w) is a residual edge} /* this causes
d(v) to increase by at least one */

Else make the next edge out of v, the current edge.

Relabeling v, requires a single scan of v’s edge list. As each relabeling of v, causes d(v)
to go up by one, the number of relabeling steps (for v) are at most O(n), each step takes
O(degree(v)) time. Thus, total time for all relabellings will be:

© 2005 by Chapman & Hall/CRC

12-20 Handbook of Data Structures and Applications

O(
∑

ndegree(v)) = O(n
∑

degree) = O(n × 2m) = O(nm). Each non-saturating push
clearly takes O(1) time, thus time for algorithm will be O(nm)+O(#non saturating pushes).

Discharge(v)

Keep on applying Push/Relabel(v) until either

1. entire excess at v is pushed out, OR,
2. label(v) increases.

FIFO/Queue

Initialize a queue “Queue” to contain s.
Let v be the vertex in front of Queue. Discharge(v), if a push causes excess of a vertex

w to become non-zero, add w to the rear of the Queue.
Let phase 1, consist of discharge operations applied to vertices added to the queue by

initialization of pre-flow.
Phase (i + 1) consists of discharge operations applied to vertices added to the queue

during phase i.
Let Φ = max{d(v)|v is active }, with maximum as zero, if there are no active vertices. If

in a phase, no relabeling is done, then the excess of all vertices which were in the queue has
been moved. If v is any vertex which was in the queue, then excess has been moved to a node
w, with d(w) = d(v)−1. Thus, max{d(w)|w has now become active} ≤ max{d(v)−1|v was
active } = Φ − 1.

Thus, if in a phase, no relabeling is done, Φ decreases by at least one. Moreover, as
number of relabeling steps are bounded by 2n2, number of passes in which relabeling takes
place is at most 2n2.

Only way in which Φ can increase is by relabeling. Since the maximum value of a label
of any active vertex is n − 1, and as a label never decreases, the total of all increases in Φ
is (n − 1)2.

As Φ decreases by at least one in a pass in which there is no relabeling, number of passes
in which there is no relabeling is (n − 1)2 + 2n2 ≤ 3n2.

FACT 12.8 Number of passes in FIFO algorithm is O(n2).

12.8 FIFO: Dynamic Tree Implementation

Time for non-saturating push is reduced by performing a succession of pushes along a single
path in one operation. After a non-saturating push, the edge continues to be admissible,
and we know its residual capacity. [6]

Initially each vertex is made into a one vertex node. Arc of dynamic trees are a subset of
admissible arcs. Value of an arc is its admissible capacity (if (u,parent(u)) is an arc, value
of arc will be stored at u). Each active vertex is a tree root.

Vertices will be kept in a queue as in FIFO algorithm, but instead of discharge(v), Tree-
Push(v), will be used. We will further ensure that tree size does not exceed k (k is a
parameter to be chosen later). The Tree-Push procedure is as follows:

© 2005 by Chapman & Hall/CRC

Splay Trees 12-21

Tree-Push(v)

/* v is active vertex and (v, w) is an admissible arc */

1. /* link trees rooted at v and the tree containing w by making w the parent of v,
if the tree size doesn’t exceed k */.
if v is root and (find size(v)+find size(w))≤ k, then link v and w. Arc (v, w) gets
the value equal to the residual capacity of edge (v, w)

2. if v is root but find size(v)+find size(w) > k, then push flow from v to w.
3. if v is not a tree root, then send δ = min{e(v),find cost(find min(v))} units of

flow from v, by add cost(v,−δ) /* decrease residual capacity of all arcs */ and
while v is not a root and find cost(find min(v))== 0 do

{ z := find min(v); cut(z); /* delete saturated edge */
f(z,parent(z)) := c(z,parent(z));
/* in saturated edge, flow=capacity */
f(parent(z), z) := −c(z,parent(z));
}

4. But, if arc(v, w) is not admissible, replace (v, w), as current edge by next edge
on v’s list. If v has no next-edge, then make the first edge, the current edge and
cut-off all children of v, and relabel(v).

Analysis

1. Total time for relabeling is O(nm).
2. Only admissible edges are present in the tree, and hence if an edge (u, v) is cut

in step (3) or in step (4) then it must be admissible, i.e., d(u) = d(v) + 1. Edge
(v, u) can become admissible and get cut, iff, dthen(v) = dthen(u)+1 ≥ d(u)+1 =
d(v) + 2. Thus, the edge gets cut again only if label increases by 2. Thus, for
each edge, number of times it can get cut is O(n). So total number of cuts are
O(nm).

3. As initially, there are at most n-single node trees, number of links are at most
n+#no of cuts= n + O(nm) = O(nm).

Moreover, there is at most one tree operation for each relabeling, cut or link. Further, for
each item in queue, one operation is performed. Thus,

LEMMA 12.2 The time taken by the algorithm is
O(log k × (nm + #No of times an item is added to the queue))

Root-Nodes Let Tv denote the tree containing node v. Let r be a tree root whose excess
has become positive. It can become positive either due to:

1. push from a non-root vertex w in Step 3 of the tree-push algorithm.
2. push from a root w in Step 2 /* find size(w)+find size(r) > k */

REMARK 12.7 Push in Step 3 is accompanied by a cut (unless first push is non-
saturating). As the number of cuts is O(nm), number of times Step 3 (when first push
is saturating) can occur is O(nm). Thus, we need to consider only the times when first
push was non-saturating, and the excess has moved to the root as far as push in Step 3 is
concerned.

© 2005 by Chapman & Hall/CRC

12-22 Handbook of Data Structures and Applications

In either case let i be the pass in which this happens (i.e., w was added to the queue in
pass (i − 1)). Let I be the interval from beginning of pass (i − 1) to the time when e(r)
becomes positive.

Case 1: (Tw changes during I) Tw can change either due to link or cut. But number
of times a link or a cut can occur is O(nm). Thus, this case occurs at most
O(nm) time. Thus, we may assume that Tw does not change during interval I.
Vertex w is added to the queue either because of relabeling of w, or because of a
push in Step 2 from (say) a root v to w.

Case 2: (w is added because of relabeling) Number of relabeling steps are O(n2).
Thus number of times this case occurs is O(n2). Thus, we may assume that w
was added to queue because of push from root v to w in Step 2.

Case 3: (push from w was saturating) As the number of saturating pushes is O(nm),
this case occurs O(nm) times. Thus we may assume that push from w was
non-saturating.

Case 4: (edge (v, w) was not the current edge at beginning of pass (i − 1)). Edge
(v, w) will become the current edge, only because either the previous current
edge (v, x) got saturated, or because of relabel(v), or relabel(x). Note, that if
entire excess out of v was moved, then (v, w) will remain the current edge.
As number of saturating pushes are O(nm) and number of relabeling are O(n2),
this case can occur at most O(nm) times. Thus, we may assume that (v, w) was
the current edge at beginning of pass (i − 1).

Case 5: (Tv changes during interval I) Tv can change either due to link or cut. But
the number of times a link or a cut can occur is O(nm). Thus, this case occurs at
most O(nm) time. Thus, we may assume that Tv has not changed during interval
I.

Remaining Case: Vertex w was added to the queue because of a non-saturating push
from v to w in Step 2 and (v, w) is still the current edge of v. Moreover, Tv and
Tw do not change during the interval I.
A tree at beginning of pass (i − 1) can participate in only one pair (Tw, Tv) as
Tw, because this push was responsible for adding w to the queue. Observe that
vertex w is uniquely determined by r.
And, a tree at beginning of pass (i− 1) can participate in only one pair (Tw, Tv)
as Tv, because (v, w) was the current edge out of root v, at beginning of pass
(i− 1) (and is still the current edge). Thus, choice of Tv will uniquely determine
Tw (and conversely).
Thus, as a tree Tx can participate once in a pair as Tv, and once as Tw, and the
two trees are unchanged, we have

∑
(v,w) |Tv|+ |Tw| ≤ 2n (a vertex is in at most

one tree). As push from v to w was in Step 2, find size(v)+find size(w) > k, or
|Tv| + |Tw| > k. Thus, the number of such pairs is at most 2n/k.
But from Fact 12.8, as there are at most O(n2) passes, the number of such pairs
are O(n3/k).

Non-Root-Nodes Let us count the number of times a non-root can have its excess made
positive. Its excess can only be made positive as a result of push in Step 2. As the number
of saturating pushes is O(nm), clearly, O(nm) pushes in Step 2 are saturating.

If the push is non-saturating, then entire excess at that node is moved out, hence it can
happen only once after a vertex is removed from Queue. If v was not a root when it was
added to the queue, then it has now become a root only because of a cut. But number of
cuts is O(nm). Thus, we only need to consider the case when v was a root when it was

© 2005 by Chapman & Hall/CRC

Splay Trees 12-23

added to the queue. The root was not earlier in queue, because either its excess was then
zero, or because its distance label was low. Thus, now either

1. distance label has gone up— this can happen at most O(n2) times, or
2. now its excess has become positive. This by previous case can happen at most

O(nm + (n3/k)) times.

Summary If k is chosen such that nm = n3/k, or k = n2/m, time taken by the algorithm
is O(nm log(n2/m)).

12.9 Variants of Splay Trees and Top-Down Splaying

Various variants, modifications and generalization of Splay trees have been studied, see for

[13] are “semi-splay” and “simple-splay” trees. In simple splaying the second rotation in

Simple splaying can be shown to have a larger constant factor both theoretically [13] and

first rotation (i.e., stop at the middle figure) and continue splaying from node y instead
of x. Sleator and Tarjan observe that for some access sequences “semi-splaying” may be
better but for some others the usual splay is better.

“Top-down” splay trees [13] are another way of implementing splay trees. Both the trees
coincide if the node being searched is at an even depth [11], but if the item being searched
is at an odd depth, then the top-down and bottom-up trees may differ ([11, Theorem 2]).

Some experimental evidence suggests [3] that top-down splay trees [11, 13] are faster in
practice as compared to the normal splay trees, but some evidence suggests otherwise [16].

In splay trees as described, we first search for an item, and then restructure the tree.
These are called “bottom-up” splay trees. In “top-down” splay trees, we look at two nodes
at a time, while searching for the item, and also keep restructuring the tree until the item
we are looking for has been located.

Basically, the current tree is divided into three trees, while we move down two nodes at
a time searching for the query item

left tree: Left tree consists of items known to be smaller than the item we are search-
ing.

right tree: Similarly, the right tree consists of items known to be larger than the item
we are searching.

middle tree: this is the subtree of the original tree rooted at the current node.

Basically, the links on the access path are broken and the node(s) which we just saw are
joined to the bottom right (respectively left) of the left (respectively right) tree if they
contain item greater (respectively smaller) than the item being searched. If both nodes are
left children or if both are right children, then we make a rotation before breaking the link.
Finally, the item at which the search ends is the only item in the middle tree and it is made
the root. And roots of left and right trees are made the left and right children of the root.

Acknowledgment

I wish to thank N. Nataraju, Priyesh Narayanan, C. G. Kiran Babu S. and Lalitha S. for
careful reading of a previous draft and their helpful comments.

© 2005 by Chapman & Hall/CRC

experimentally [11]. In semi-splay [13], in the zig-zig case (see Figure 12.2) we do only the

the “zig-zag” case is done away with (i.e., we stop at the middle figure in Figure 12.3).

example [2, 11, 12, 14]. Two of the most popular “variants” suggested by Sleator and Tarjan

12-24 Handbook of Data Structures and Applications

References
[1] Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin, Network Flows (Theory,

Algorithms and Applications), Prentice Hall, Inc, Englewood Cliffs, NJ, USA, 1993.
[2] S. Albers and M. Karpinkski, Randomized splay trees: Theoretical and experimental

results, Infor. Proc. Lett., vol 81, 2002, pp 213-221.
[3] J. Bell and G. Gupta, An Evaluation of Self-adjusting Binary Search Tree Techniques,

Software-Practice and Experience, vol 23, 1993, 369-382.
[4] T. Bell and D. Kulp, Longest-match String Searching for Ziv-Lempel Compression,

Software-Practice and Experience, vol 23, 1993, 757-771.
[5] R.Cole, On the dynamic finger conjecture for splay trees. Part II: The Proof, SIAM

J. Comput., vol 30, no. 1, 2000, pp 44-5.
[6] A.V.Goldberg and R.E.Tarjan, “A New Approach to the Maximum-Flow Problem,

JACM, vol 35, no. 4, October 1988, pp 921-940.
[7] D. Grinberg, S. Rajagopalan, R. Venkatesh and V. K. Wei, Splay Trees for Data

Compression, SODA, 1995, 522-530
[8] J. Iacono, Key Independent Optimality, ISAAC 2002, LNCS 2518, 2002, pp 25-31.
[9] D. W. Jones, Application of Splay Trees to data compression, CACM, vol 31, 1988,

996-1007.
[10] A. Moffat, G.Eddy and O.Petersson, Splaysort: Fast, Versatile, Practical, Software-

Practice and Experience, vol 26, 1996, 781-797.
[11] E. Mäkinen, On top-down splaying, BIT, vol 27, 1987, 330-339.
[12] M.Sherk, Self-Adjusting k-ary search trees, J. Algorithms, vol 19, 1995, pp 25-44.
[13] D. Sleator and R. E. Tarjan, Self-Adjusting Binary Search Trees, JACM, vol 32, 1985
[14] A. Subramanian, An explanation of splaying, J. Algorithms, vol 20, 1996, pp 512-525.
[15] R. E. Tarjan, Data Structures and Network Algorithms, SIAM 1983.
[16] H. E. Williams, J. Zobel and S. Heinz, Self-adjusting trees in practice for large text

collections, Software-Practice and Experience, vol 31, 2001, 925-939.

© 2005 by Chapman & Hall/CRC

13
Randomized Dictionary Structures

C. Pandu Rangan
Indian Institute of Technology, Madras

13.1 13-1
13.2 Preliminaries . 13-3

Randomized Algorithms • Basics of Probability
Theory • Conditional Probability • Some Basic
Distributions • Tail Estimates

13.3 Skip Lists . 13-10
13.4 Structural Properties of Skip Lists 13-12

Number of Levels in Skip List • Space Complexity
13.5 Dictionary Operations . 13-13
13.6 Analysis of Dictionary Operations 13-14
13.7 Randomized Binary Search Trees 13-17

Insertion in RBST • Deletion in RBST
13.8 Bibliographic Remarks . 13-21

13.1 Introduction

In the last couple of decades, there has been a tremendous growth in using randomness as
a powerful source of computation. Incorporating randomness in computation often results
in a much simpler and more easily implementable algorithms. A number of problem do-
mains, ranging from sorting to stringology, from graph theory to computational geometry,
from parallel processing system to ubiquitous internet, have benefited from randomization
in terms of newer and elegant algorithms. In this chapter we shall see how randomness
can be used as a powerful tool for designing simple and efficient data structures. Solving a
real-life problem often involves manipulating complex data objects by variety of operations.
We use abstraction to arrive at a mathematical model that represents the real-life objects
and convert the real-life problem into a computational problem working on the mathe-
matical entities specified by the model. Specifically, we define Abstract Data Type (ADT)
as a mathematical model together with a set of operations defined on the entities of the
model. Thus, an algorithm for a computational problem will be expressed in terms of the
steps involving the corresponding ADT operations. In order to arrive at a computer based
implementation of the algorithm, we need to proceed further taking a closer look at the
possibilities of implementing the ADTs. As programming languages support only a very
small number of built-in types, any ADT that is not a built-in type must be represented
in terms of the elements from built-in type and this is where the data structure plays a
critical role. One major goal in the design of data structure is to render the operations of
the ADT as efficient as possible. Traditionally, data structures were designed to minimize
the worst-case costs of the ADT operations. When the worst-case efficient data structures
turn out to be too complex and cumbersome to implement, we naturally explore alternative

13-1

© 2005 by Chapman & Hall/CRC

Introduction .

