
17
Planar Straight Line Graphs

Siu-Wing Cheng
Hong Kong University of Science and

Technology

17.1 Introduction . 17-1
17.2 Features of PSLGs . 17-2
17.3 Operations on PSLGs . 17-3
17.4 Winged-Edge . 17-5
17.5 Halfedge . 17-7
17.6 Quadedge . 17-13
17.7 Further Remarks . 17-15
17.8 Glossary . 17-16

17.1 Introduction

tool. In mathematical terms, a graph is simply a collection of vertices and edges. Indeed, a
popular graph data structure is the adjacency lists representation [14] in which each vertex
keeps a list of vertices connected to it by edges. In a typical application, the vertices
model entities and an edge models a relation between the entities corresponding to the edge
endpoints. For example, the transportation problem calls for a minimum cost shipping
pattern from a set of origins to a set of destinations [2]. This can be modeled as a complete
directed bipartite graph. The origins and destinations are represented by two columns
of vertices. Each origin vertex is labeled with the amount of supply stored there. Each
destination vertex is labeled with the amount of demand required there. The edges are
directed from the origin vertices to the destination vertices and each edge is labeled with
the unit cost of transportation. Only the adjacency information between vertices and edges
are useful and captured, apart from the application dependent information.

We

straight edges without edge crossings. Such diagrams are called planar straight line graphs
and denoted by PSLGs for short. Examples include Voronoi diagrams, arrangements, and
triangulations. Their definitions can be found in standard computational geometry texts

we also provide their definitions in section 17.8. The straight edges in a PSLG partition the
plane into regions with disjoint interior. We call these regions faces. The adjacency lists
representation is usually inadequate for applications that manipulate PSLGs. Consider the
problem of locating the face containing a query point in a Delaunay triangulation. One
practical algorithm is to walk towards the query point from a randomly chosen starting

To support this algorithm, one needs to know the first face

17-1

© 2005 by Chapman & Hall/CRC

vertex [11], see Figure 17.1.

In geometric computing, graphs are also useful for representing various diagrams.

such as the book by de Berg et al. [3]. See also Chapters 62, 63 and 64. For completeness,

Graphs (Chapter 4) have found extensive applications in computer science as a modeling

restrict our attention to diagrams that are planar graphs embedded in the plane using

DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

17-2 Handbook of Data Structures and Applications

FIGURE 17.1: Locate the face containing the cross by walking from a randomly chosen
vertex.

that we enter as well as the next face that we step into whenever we cross an edge. Such
information is not readily provided by an adjacency lists representation.

There are three well-known data structures for representing PSLGs: the winged-edge,
halfedge, and quadedge data structures. In Sections 17.2 and 17.3, we discuss the PSLGs
that we deal with in more details and the operations on PSLGs. Afterwards, we introduce
the three data structures in Section 17.4–17.6. We conclude in Section 17.7 with some
further remarks.

17.2 Features of PSLGs

We assume that each face has exactly one boundary and we allow dangling edges on a
face boundary. These assumptions are valid for many important classes of PSLGs such as
triangulations, Voronoi diagrams, planar subdivisions with no holes, arrangements of lines,

FIGURE 17.2: Dangling edges.

There is at least one unbounded face in a PSLG but there could be more than one, for
The example also shows that

there may be some infinite edges. To handle infinite edges like halflines and lines, we need
a special vertex vinf at infinity. One can imagine that the PSLG is placed in a small almost
flat disk D at the north pole of a giant sphere S and vinf is placed at the south pole. If
an edge e is a halfline originating from a vertex u, then the endpoints of e are u and vinf .

© 2005 by Chapman & Hall/CRC

and some special arrangements of line segments (see Figure 17.2).

example, in the arrangement of lines shown in Figure 17.3.

Planar Straight Line Graphs 17-3

FIGURE 17.3: The shaded faces are the unbounded faces of the arrangement.

One can view e as a curve on S from u near the north pole to vinf at the south pole, but e
behaves as a halfline inside the disk D. If an edge e is a line, then vinf is the only endpoint
of e. One can view e as a loop from vinf to the north pole and back, but e behaves as a line
inside the disk D.

We do not allow isolated vertices, except for vinf . Planarity implies that the incident
edges of each vertex are circularly ordered around that vertex. This applies to vinf as well.

A PSLG data structure keeps three kinds of attributes: vertex attributes, edge attributes,
and face attributes. The attributes of a vertex include its coordinates except for vinf (we
assume that vinf is tagged to distinguish it from other vertices). The attributes of an edge
include the equation of the support line of the edge (in the form of Ax + By + C = 0). The
face attributes are useful for auxiliary information, e.g., color.

17.3 Operations on PSLGs

The operations on a PSLG can be classified into access functions and structural operations.
The access functions retrieve information without modifying the PSLG. Since the access
functions partly depend on the data structure, we discuss them later when we introduce
the data structures. In this section, we discuss four structural operations on PSLGs: edge
insertion, edge deletion, vertex split, and edge contraction. We concentrate on the semantics
of these four operations and discuss the implementation details later when we introduce the
data structures. For vertex split and edge contraction, we assume further that each face
in the PSLG is a simple polygon as these two operations are usually used under such
circumstances.

Edge insertion and deletion

When a new edge e with endpoints u and v is inserted, we assume that e does not cross
any existing edge. If u or v is not an existing vertex, the vertex will be created. If both u
and v are new vertices, e is an isolated edge inside a face f . Since each face is assumed to
have exactly one boundary, this case happens only when the PSLG is empty and f is the
entire plane. Note that e becomes a new boundary of f . If either u or v is a new vertex,
then the boundary of exactly one face gains the edge e. If both u and v already exist, then
u and v lie on the boundary of a face which is split into two new faces by the insertion of

The deletion of an edge e has the opposite effects. After the deletion of e, if any of its
endpoint becomes an isolated vertex, it will be removed. The vertex vinf is an exception
and it is the only possible isolated vertex. The edge insertion is clearly needed to create

© 2005 by Chapman & Hall/CRC

e. These cases are illustrated in Figure 17.4.

17-4 Handbook of Data Structures and Applications

e

(a) (b) c()

ee

FIGURE 17.4: Cases in edge insertion.

a PSLG from scratch. Other effects can be achieved by combining edge insertions and
deletions appropriately. For example, one can use the two operations to overlay two PSLGs
in a plane sweep algorithm, see Figure 17.5.

d

v insert av bv cv, and, , dv

a b

cd

c

delete ac and bd

a b

cd

a b

FIGURE 17.5: Intersecting two edges.

Vertex split and edge contraction

The splitting of a vertex v is best visualized as the continuous morphing of v into an
edge e. Depending on the specification of the splitting, an incident face of v gains e on

The
incident edges of v are displaced and it is assumed that no self-intersection occurs within
the PSLG during the splitting. The contraction of an edge e is the inverse of the vertex
split. We also assume that no self-intersection occurs during the edge contraction. If e is
incident on a triangular face, that face will disappear after the contraction of e.

Not every edge can be contracted. Consider an edge ab. If the PSLG contains a cycle
abv that is not the boundary of any face incident to ab, we call the edge ab non-contractible

after the contraction, there is an ambiguity whether dv should be incident on the face f1 or
the face f2. In fact, one would expect the edge dv to behave like av and bv and be incident
on both f1 and f2 after the contraction. However, this is impossible.

The vertex split and edge contraction have been used in clustering and hierarchical draw-
ing of maximal planar graphs [6].

© 2005 by Chapman & Hall/CRC

its boundary or an incident edge of v is split into a triangular face, see Figure 17.6.

because its contraction is not cleanly defined. Figure 17.7 shows an example. In the figure,

Planar Straight Line Graphs 17-5

b

ab to d

split to abd
d

a

contract

FIGURE 17.6: Vertex split and edge contraction.

v

2f1

contract ab to d

f2f1

a b
d

c
c

v

f

FIGURE 17.7: Non-contractible edge.

17.4 Winged-Edge

The winged-edge data structure was introduced by Baumgart [1] and it predates the halfedge
and quadedge data structures. There are three kinds of records: vertex records, edge records,
and face records. Each vertex record keeps a reference to one incident edge of the vertex.
Each face record keeps a reference to one boundary edge of the face. Each edge e is stored

• The origin endpoint e.org and the destination endpoint e.dest of e. The conven-
tion is that e is directed from e.org to e.dest.

• The faces e.left and e.right on the left and right of e, respectively.
• The two edges e.lcw and e.lccw adjacent to e that bound the face e.left. The

edge e.lcw is incident to e.org and the edge e.lccw is incident to e.dest. Note
that e.lcw (resp. e.lccw) succeeds e if the boundary of e.left is traversed in the
clockwise (resp. anti-clockwise) direction from e.

• The two edges e.rcw and e.rccw adjacent to e that bound the face e.right. The
edge e.rcw is incident to e.dest and the edge e.rccw is incident to e.org. Note
that e.rcw (resp. e.rccw) succeeds e if the boundary of e.right is traversed in the
clockwise (resp. anti-clockwise) direction from e.

The information in each edge record can be retrieved in constant time. Given a vertex v, an
edge e, and a face f , we can thus answer in constant time whether v is incident on e and e
is incident on f . Given a vertex v, we can traverse the edges incident to v in clockwise order
as follows. We output the edge e kept at the vertex record for v. We perform e := e.rccw if
v = e.org and e := e.lccw otherwise. Then we output e and repeat the above. Given a face
f , we can traverse its boundary edges in clockwise order as follows. We output the edge e
kept at the face record for f . We perform e := e.lcw if f = e.left and e := e.rcw otherwise.

© 2005 by Chapman & Hall/CRC

as an oriented edge with the following references (see Figure 17.8):

17-6 Handbook of Data Structures and Applications

e

e.rcwe.rccw

e.lccwe.lcw

e.org e.dest

e.left

e.right

FIGURE 17.8: Winged-edge data structure.

Then we output e and repeat the above.
Note that an edge reference does not carry information about the orientation of the edge.

Also, the orientations of the boundary edges of a face need not be consistent with either
the clockwise or anti-clockwise traversal. Thus, the manipulation of the data structure is
often complicated by case distinctions. We illustrate this with the insertion of an edge
e. Assume that e.org = u, e.dest = v, and both u and v already exist. The input also
specifies two edges e1 and e2 incident to u and v, respectively. The new edge e is supposed
to immediately succeed e1 (resp. e2) in the anti-clockwise ordering of edges around u (resp.
v). The insertion routine works as follows.

1. If u = vinf and it is isolated, we need to store the reference to e in the vertex
record for u. We update the vertex record for v similarly.

2. Let e3 be the incident edge of u following e1 such that e is to be inserted between
e1 and e3. Note that e3 succeeds e1 in anti-clockwise order. We insert e between
e1 and e3 as follows.

e.rccw := e1; e.lcw := e3;
if e.org = e1.org then e1.lcw := e; else e1.rcw := e;
if e.org = e3.org then e3.rccw := e;else e3.lccw := e;

3. Let e4 be the incident edge of v following e2 such that e is to be inserted between
e2 and e4. Note that e4 succeeds e2 in anti-clockwise order. We insert e between
e2 and e4 as follows.

e.lccw := e2; e.rcw := e4;
if e.dest = e2.dest then e2.rcw := e; else e2.lcw := e;
if e.dest = e4.dest then e4.lccw := e; else e4.rccw := e;

4. The insertion of e has split a face into two. So we create a new face f and make
e.left reference it. Also, we store a reference to e in the face record for f . There
are further ramifications. First, we make e.right reference the old face.

if e.org = e1.org then e.right := e1.left ; else e.right := e1.right ;

Second, we make the left or right fields of the boundary edges of f reference f .

e′ := e; w := e.org;
repeat

if e′.org = w then e′.left := f ; w := e′.dest ; e′ := e′.lccw
else e′.right := f ; w := e′.org; e′ := e′.rccw

until e′ = e;

Notice the inconvenient case distinctions needed in steps 2, 3, and 4. The halfedge data
structure is designed to keep both orientations of the edges and link them properly. This
eliminates most of these case distinctions as well as simplifies the storage scheme.

© 2005 by Chapman & Hall/CRC

Planar Straight Line Graphs 17-7

17.5 Halfedge

In the halfedge data structure, for each edge in the PSLG, there are two symmetric edge
records for the two possible orientations of the edge [15]. This solves the orientation problem
in the winged-edge data structure. The halfedge data structure is also known as the doubly
connected edge list [3]. We remark that the name doubly connected edge list was first used
to denote the variant of the winged-edge data structure in which the lccw and rccw fields
are omitted [12, 13].

There are three kinds of records: vertex records, halfedge records, and face records. Let e
be a halfedge. The following information is kept at the record for e (see Figure 17.9).

• The reference e.sym to the symmetric version of e.
• The origin endpoint e.org of e. We do not need to store the destination endpoint

of e since it can be accessed as e.sym.org. The convention is that e is directed
from e.org to e.sym.org.

• The face e.left on the left of e.
• The next edge e.succ and the previous edge e.pred in the anti-clockwise traversal

around the face e.left.

For each vertex v, its record keeps a reference to one halfedge v.edge such that v =
v.edge.org . For each face f , its record keeps a reference to one halfedge f.edge such that
f = f.edge.left .

e.pred

e.sym

e.left

e
e.org

e.succ

FIGURE 17.9: Halfedge data structure.

We introduce two basic operations make halfedges and half splice which will be
needed for implementing the operations on PSLGs. These two operations are motivated by
the operations make edge and splice introduced by Guibas and Stolfi [8] for the quadedge
data structure. We can also do without make halfedges and half splice, but they make
things simpler.

• make halfedges(u, v): Return two halfedges e and e.sym connecting the points
u and v. The halfedges e and e.sym are initialized such that they represent a new
PSLG with e and e.sym as the only halfedges. That is, e.succ = e.sym = e.pred
and e.sym.succ = e = e.sym.pred . Also, e is the halfedge directed from u to v. If
u and v are omitted, it means that the actual coordinates of e.org and e.sym.org
are unimportant.

• half splice(e1, e2): Given two halfedges e1 and e2, half splice swaps the
contents of e1.pred and e2.pred and the contents of e1.pred .succ and e2.pred .succ.
The effects are:

– Let v = e2.org . If e1.org �= v, the incident halfedges of e1.org and e2.org

© 2005 by Chapman & Hall/CRC

are merged into one circular list (see Figure 17.10(a)). The vertex v is now

17-8 Handbook of Data Structures and Applications

1e2

e1

e

e

e2

2succ

pred

()b

(a)

e1

succ

pred

succ

pred

e2

e1

FIGURE 17.10: The effects of half splice.

redundant and we finish the merging as follows.

e′ := e2;
repeat

e′.org := e1.org ; e′ := e′.sym.succ;
until e′ = e2;
delete the vertex record for v;

– Let v = e2.org . If e1.org = v, the incident halfedges of v are separated into
two circular lists (see Figure 17.10(b)). We create a new vertex u for e2.org
with the coordinates of u left uninitialized. Then we finish the separation
as follows.

u.edge := e2; e′ := e2;
repeat

e′.org := u; e′ := e′.sym.succ;
until e′ = e2.

© 2005 by Chapman & Hall/CRC

Planar Straight Line Graphs 17-9

The behavior of half splice is somewhat complex even in the following special cases. If
e is an isolated halfedge, half splice(e1, e) deletes the vertex record for e.org and makes
e a halfedge incident to e1.org following e1 in anti-clockwise order. If e1 = e.sym.succ,
half splice(e1, e) detaches e from the vertex e1.org and creates a new vertex record for
e.org. If e1 = e, half splice(e, e) has no effect at all.

Access functions

The information in each halfedge record can be retrieved in constant time. Given a vertex
v, a halfedge e, and a face f , we can thus answer the following adjacency queries:

1: Is v incident on e? This is done by checking if v = e.org or e.sym.org .
2: Is e incident on f? This is done by checking if f = e.left .
3: List the halfedges with origin v in clockwise order. Let e = v.edge. Output e,

perform e := e.sym.succ, and then repeat until we return to v.edge.
4: List the boundary halfedges of f in anti-clockwise order. Let e = f.edge. Output

e, perform e := e.succ, and then repeat until we return to f.edge.

Other adjacency queries (e.g., listing the boundary vertices of a face) can be answered
similarly.

Edge insertion and deletion

The edge insertion routine takes two vertices u and v and two halfedges e1 and e2. If u
is a new vertex, e1 is ignored; otherwise, we assume that e1.org = u. Similarly, if v is a
new vertex, e2 is ignored; otherwise, we assume that e2.org = v. The general case is that
an edge connecting u and v is inserted between e1 and e1.pred .sym and between e2 and
e2.pred .sym . The two new halfedges e and e.sym are returned with the convention that e
is directed from u to v.

Algorithm insert(u, v, e1, e2)
1. (e, e.sym) := make halfedges(u, v);
2. if u is not new
3. then half splice(e1, e);
4. e.left := e1.left ;
5. e.sym.left := e1.left ;
6. if v is not new
7. thenthen half splice(e2, e.sym);
8. e.left := e2.left ;
9. e.sym.left := e2.left ;
10. if neither u nor v is new
11. then /* A face has been split */
12. e2.left .edge := e;
13. create a new face f ;
14. f.edge := e.sym;
15. e′ := e.sym;
16. repeat
17. e′.left := f ;
18. e′ := e′.succ;
19. until e′ = e.sym;
20. return (e, e.sym);

© 2005 by Chapman & Hall/CRC

17-10 Handbook of Data Structures and Applications

e.symeee.sym

(a) (b)

ee.sym

(c)

FIGURE 17.11: Cases in deletion.

The following deletion algorithm takes the two halfedges e and e.sym corresponding to
the edge to be deleted. If the edge to be deleted borders two adjacent faces, they have to
be merged after the deletion.

Algorithm delete(e, e.sym)
1. if e.left �= e.sym.left
2. then /* Figure 17.11(a) */
3. /* the faces adjacent to e and e.sym are to be merged */
4. delete the face record for e.sym.left ;
5. e′ := e.sym;
6. repeat
7. e′.left := e.left ;
8. e′ := e′.succ;
9. until e′ = e.sym;
10. e.left .edge := e.succ;
11. half splice(e.sym.succ, e);
12. half splice(e.succ, e.sym);
13. else if e.succ = e.sym
14. then /* Figure 17.11(b) */
15. e.left .edge := e.pred ;
16. half splice(e.sym.succ, e);
17. else /* Figure 17.11(c) */
18. e.left .edge := e.succ;
19. half splice(e.succ, e.sym);
20. /* e becomes an isolated edge */
21. delete the vertex record for e.org if e.org �= vinf ;
22. delete the vertex record for e.sym.org if e.sym.org �= vinf ;
23. delete the halfedges e and e.sym;

Vertex split and edge contraction

Recall that each face is assumed to be a simple polygon for the vertex split and edge
contraction operations. The vertex split routine takes two points (p, q) and (x, y) and four
halfedges e1, e2, e3, and e4 in anti-clockwise order around the common origin v. It is
required that either e1 = e2 or e1.pred = e2.sym and either e3 = e4 or e3.pred = e4.sym.
The routine splits v into an edge e connecting the points (p, q) and (x, y). Also, e borders
the faces bounded by e1 and e2 and by e3 and e4. Note that if e1 = e2, we create a new
face bounded by e1, e2, and e. Similarly, a new face is created if e3 = e4. The following is
the vertex split algorithm.

© 2005 by Chapman & Hall/CRC

Planar Straight Line Graphs 17-11

1e
3e

4e

3e
2e

1e
e

a

bbb

d)(

e

u

e

u

1

1e 3e

4e

)a(

e

4ea

3e

4e

2e

1e

3e

4e

2e

1e

1

1e

3e

c)(

3e1e

b)(

e

e

2e 3e2e

1e

3e

4e

2

3

3e

a

e1e

1e 3e

FIGURE 17.12: Cases for split.

Algorithm split(p, q, x, y, e1, e2, e3, e4)
1. if e1 �= e2 and e3 �= e4

2. then /* Figure 17.12(a) */
3. half splice(e1, e3);
4. insert(e1.org , e3.org , e1, e3);
5. set the coordinates of e3.org to (x, y);
6. set the coordinates of e1.org to (p, q);

© 2005 by Chapman & Hall/CRC

17-12 Handbook of Data Structures and Applications

7. else if e1 = e2

8. then a := e1.sym.succ;
9. if a �= e3

10.
11. half splice(a, e3);
12. insert(a.org , e3.org, a, e3);
13. insert(a.org , e1.sym.org , a, e1.sym);
14. set the coordinates of a.org to (x, y);
15. else /* Figure 17.12(c) */
16. let u be a new vertex at (x, y);
17. (e, e.sym) := insert(u, e1.org, ·, e3);
18. insert(u, e1.sym.org , e, e1.sym);
19. insert(u, e3.sym.org , e, e3.succ);
20. set the coordinates of e1.org to (p, q);
21. else b := e3.pred .sym ;
22. /* since e1 �= e2, b �= e2 */
23. /* Figure 17.12(d) */
24. half splice(e1, e3);
25. (e, e.sym) := insert(b.org, e3.org , e1, e3);
26. insert(b.org, e3.sym.org , e, e3.succ);
27. set the coordinates of b.org to (x, y);
28. set the coordinates of e3.org to (p, q);

The following algorithm contracts an edge to a point (x, y), assuming that the edge
contractibility has been checked.

Algorithm contract(e, e.sym, x, y)
1. e1 := e.succ;
2. e2 := e.pred .sym ;
3. e3 := e.sym.succ;
4. e4 := e.sym.pred .sym ;
5. delete(e, e.sym);
6. if e1.succ �= e2.sym and e3.succ �= e4.sym
7.
8. half splice(e1, e3);
9. else if e1.succ = e2.sym and e3.succ �= e4.sym
10. then /* Figure 17.13(b) */
11. delete(e2, e2.sym);
12. half splice(e1, e3);
13. else if e1.succ �= e2.sym and e3.succ = e4.sym
14. then /* symmetric to Figure 17.13(b) */
15. delete(e4, e4.sym);
16. half splice(e1, e3);
17. else /* Figure 17.13(c) */
18. a := e3.sym.succ;
19. delete(e3, e3.sym);
20. if a �= e2

21. then delete(e2, e2.sym);
22. half splice(e1, a);
23. else delete(e2, e2.sym);
24. set the coordinates of e1.org to (x, y);

© 2005 by Chapman & Hall/CRC

then /* Figure 17.12(b) */

then /* Figure 17.13(a) */

Planar Straight Line Graphs 17-13

3

e4

e1

e2

e4
e1 e4 e1 e4

e3

e4

e3
a a

a

e

e1

e3

e4

e1

(

4e1

e2 e3

e

)

e1

e2

b

()c

(a)

e1 e4

e2 e3

FIGURE 17.13: Cases for contract.

17.6 Quadedge

The quadedge data structure was introduced by Guibas and Stolfi [8]. It represents the
planar subdivision and its dual simultaneously. The dual S∗ of a PSLG S is constructed as
follows. For each face of S, put a dual vertex inside the face. For each edge of S bordering
the faces f and f ′, put a dual edge connecting the dual vertices of f and f ′. The dual
of a vertex v in S is a face and this face is bounded by the dual of the incident edges
of v. The dual may have loops and two vertices may
be connected by more than one edge, so the dual may not be a PSLG. Nevertheless, the
quadedge data structure is expressive enough to represent the dual. In fact, it is powerful
enough to represent subdivisions of both orientable and non-orientable surfaces. We describe
a simplified version sufficient for our purposes.

Each edge e in the PSLG is represented by four quadedges e[i], where i ∈ {0, 1, 2, 3}. The
quadedges e[0] and e[2] are the two oriented versions of e. The quadedges e[1] and e[3] are
the two oriented versions of the dual of e. These four quadedges are best viewed as a cross
such as e[i + 1] is obtained by rotating e[i] for π/2 in the anti-clockwise direction. This is

has the same origin as e[i] and follows e[i] in anti-clockwise order. In effect, the next fields
form a circular linked list of quadedges with a common origin. This is called an edge ring.

© 2005 by Chapman & Hall/CRC

Figure 17.14 shows an example.

illustrated in Figure 17.15. The quadedge e[i] has a next field referencing the quadedge that

17-14 Handbook of Data Structures and Applications

FIGURE 17.14: The solid lines and black dots show a PSLG and the dashed lines and the
white dots denote the dual.

[3]e

[2]e

[0]e

[1]e

FIGURE 17.15: Quadedges.

The following primitives are needed.

• rot(e, i): Return e[(i + 1)mod4].
• rot−1(e, i): Return e[(i + 3)mod4].
• sym(e, i): This function returns the quadedge with the opposite orientation of

e[i]. This is done by returning rot(rot(e, i)).
• onext(e, i): Return e[i].next.
• oprev(e, i): This function gives the quadedge that has the same origin as e[i] and

follows e[i] in clockwise order. This is done by returning rot(e[(i+1)mod4].next).

The quadedge data structure is entirely edge based and there are no explicit vertex and
face records.

The following two basic operations make edge and splice are central to the operations
on PSLGs supported by the quadedge data structure. Our presentation is slightly different
from that in the original paper [8].

• make edge(u, v): Return an edge e connecting the points u and v. The quadedges
e[i] where 0 ≤ i ≤ 3 are initialized such that they represent a new PSLG with e
as the only edge. Also, e[0] is the quadedge directed from u to v. If u and v are
omitted, it means that the actual coordinates of the endpoints of are unimportant.

• splice(a, i, b, j): Given two quadedges a[i] and b[j], let (c, k) = rot(a[i].next)
and (d, l) = rot(b[j].next), splice swaps the contents of a[i].next and b[j].next
and the contents of c[k].next and d[l].next. The effects on the edge rings of the
origins of a[i] and b[j] and the edge rings of the origins of c[k] and d[l] are:

© 2005 by Chapman & Hall/CRC

Planar Straight Line Graphs 17-15

[i]

a[i].next

.next[]b j

(b)

a

[]b j

.next[]b j

a[i]

a[i].next

[]b j

.next[]b j

(a)

[]b j

a[i].next

a[i]

.next[]b j

[]b j a[i]

a[i].next

FIGURE 17.16: The effects of splice.

– If the two rings are different, they are merged into one (see Figure 17.16(a)).

– If the two rings are the same, it will be split into two separate rings (see
Figure 17.16(b)).

Notice that make edge and splice are similar to the operations make halfedges and
half splice introduced for the halfedge data structure in the previous section. As men-
tioned before, they inspire the definitions of make halfedges and half splice. Due to
this similarity, one can easily adapt the edge insertion, edge deletion, vertex split, and edge
contraction algorithms in the previous section for the quadedge data structure.

17.7 Further Remarks

We have assumed that each face in the PSLG has exactly one boundary. This requirement
can be relaxed for the winged-edge and the halfedge data structures. One method works
as follows. For each face f , pick one edge from each boundary and keep a list of references
to these edges at the face record for f . Also, the edge that belongs to outer boundary of
f is specially tagged. With this modification, one can traverse the boundaries of a face

© 2005 by Chapman & Hall/CRC

17-16 Handbook of Data Structures and Applications

f consistently (e.g., keeping f on the left of traversal direction). The edge insertion and
deletion algorithms also need to be enhanced. Since a face f may have several boundaries,
inserting an edge may combine two boundaries without splitting f . If the insertion indeed
splits f , one needs to distribute the other boundaries of f into the two faces resulting from
the split. The reverse effects of edge deletion should be taken care of similarly.

The halfedge data structure has also been used for representing orientable polyhedral
surfaces [10]. The full power of the quadedge data structure is only realized when one deals
with both subdivisions of orientable and non-orientable surfaces. To this end, one needs to
introduce a flip bit to allow viewing the surface from the above or below. The primitives
need to be enhanced for this purpose. The correctness of the data structure is proven
formally using edge algebra. The details are in the Guibas and Stolfi’s original paper [8].

The vertex split and edge contraction are also applicable for polyhedral surfaces. The
edge contractibility criteria carries over straightforwardly. Edge contraction is a popular
primitive for surface simplification algorithms [4, 7, 9]. The edge contractibility criteria for
non-manifolds has also been studied [5].

17.8 Glossary

Arrangements. Given a collection of lines, we split each line into edges by inserting a vertex
at every intersection on the line. The resulting PSLG is called the arrangement of lines.
The arrangement of line segments is similarly defined.

Voronoi diagram. Let S be a set of points in the plane. For each point p ∈ S, the Voronoi
region of p is defined to be {x ∈ R2 : ‖p− x‖ ≤ ‖q − x‖, ∀q ∈ S}. The Voronoi diagram of
S is the collection of all Voronoi regions (including their boundaries).

Triangulation. Let S be a set of points in the plane. Any maximal PSLG with the points
in S as vertices is a triangulation of S.

Delaunay triangulation. Let S be a set of points in the plane. For any three points p, q, and
r in S, if the circumcircle of the triangle pqr does not strictly enclose any point in S, we call
pqr a Delaunay triangle. The Delaunay triangulation of S is the collection of all Delaunay
triangles (including their boundaries). The Delaunay triangulation of S is the dual of the
Voronoi diagram of S.

Acknowledgment

This work was supported, in part, by the Research Grant Council, Hong Kong, China
(HKUST 6190/02E).

References

[1] B.G. Baumgart, A polyhedron representation for computer vision, National Computer
conference, 589–596, Anaheim, CA, 1975, AFIPS.

[2] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, Linear Programming and Network
Flows, Wiley, 1990.

[3] M. deBerg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Ge-
ometry – Algorithms and Applications, Springer, 2000.

[4] S.-W. Cheng, T. K. Dey, and S.-H. Poon, Hierarchy of Surface Models and Irreducible

© 2005 by Chapman & Hall/CRC

Planar Straight Line Graphs 17-17

Triangulation, Computational Geometry: Theory and Applications, 27(2004), 135–
150.

[5] T.K. Dey, H. Edelsbrunner, S. Guha, and D.V. Nekhayev, Topology preserving edge
contraction, Publ. Inst. Math. (Beograd) (N.S.), 66 (1999), 23–45.

[6] C.A. Duncan, M.T. Goodrich, and S.G. Kobourov, Planarity-preserving clustering
and embedding for large graphs, Proc. Graph Drawing, Lecture Notes Comput. Sci.,
Springer-Verlag, vol. 1731, 1999, 186–196.

[7] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics. Proc.
SIGGRAPH ’97, 209–216.

[8] L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Transactions on Graphics, 4 (1985), 74–123.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, Mesh optimization,
Proc. SIGGRAPH ’93, 19–26.

[10] L. Kettner, Using generic programming for designing a data structure for polyhedral
surfaces, Computational Geometry - Theory and Applications, 13 (1999), 65–90.

[11] E. Mücke, I. Saias, and B. Zhu, Fast randomized point location without preprocess-
ing in two and three-dimensional Delaunay triangulations, Computational Geometry:
Theory and Applications, 12(1999), 63-83, 1999.

[12] D.E. Muller and F.P. Preparata, Finding the intersection of two convex polyhedra,
Theoretical Computer Science, 7 (1978), 217–236.

[13] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[14] S. Sahni, Data Structures, Algorithms, and Applications in Java, McGraw Hill, NY,
2000.

[15] K. Weiler, Edge-based data structures for solid modeling in curved-surface environ-
ments. IEEE Computer Graphics and Application, 5 (1985), 21–40.

© 2005 by Chapman & Hall/CRC

